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A simple setting…  

n  Classification 
¨ N data points 
¨ Finite number of possible hypothesis (e.g., dec. trees 

of depth d) 
n  A learner finds a hypothesis h that is consistent 

with training data 
¨ Gets zero error in training – errortrain(h) = 0 

n  What is the probability that h has more than ε 
true error? 
¨ errortrue(h) ≥ ε	
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Generalization error in finite 
hypothesis spaces [Haussler ’88]  

n  Theorem: Hypothesis space H finite, dataset D 
with N i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data: 

P (errortrue(h) > ✏)  |H|e�N✏
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Limitations of Haussler ‘88 bound 

n  Consistent classifier 

n  Size of hypothesis space 

P (errortrue(h) > ✏)  |H|e�N✏
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What if our classifier does not have 
zero error on the training data? 

n  A learner with zero training errors may make 
mistakes in test set 

n  What about a learner with errortrain(h) in training set?  
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Generalization bound for |H| 
hypothesis 

n  Theorem: Hypothesis space H finite, dataset D 
with N i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h: 

P (errortrue(hi)� errortrain(hi) > ✏)  e

�2N✏2
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PAC bound and Bias-Variance 
tradeoff  

n  Important: PAC bound holds for all h,  
but doesn’t guarantee that algorithm finds best h!!! 

or, after moving some terms around, 
with probability at least 1-δ:	



P (errortrue(h)� errortrain(h) > ✏)  e

�2N✏2

errortrue(h)  errortrain(h) +

s
ln |H|+ ln 1

�

2N
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What about the size of the 
hypothesis space? 

n  How large is the hypothesis space? 

N �
ln |H|+ ln 1

�

2✏2
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Boolean formulas with m binary features 
 

N �
ln |H|+ ln 1

�

2✏2
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Number of decision trees of depth k 

Recursive solution  
Given m attributes 
Hk = Number of decision trees of depth k 
H0 =2 
Hk+1 = (#choices of root attribute) * 

   (# possible left subtrees) * 
   (# possible right subtrees) 
    = m * Hk * Hk 

 
Write Lk = log2 Hk 
L0 = 1 
Lk+1 = log2 m + 2Lk 
So Lk = (2k-1)(1+log2 m) +1 

N �
ln |H|+ ln 1

�

2✏2
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PAC bound for decision trees of 
depth k 

n  Bad!!! 
¨ Number of points is exponential in depth! 

n  But, for N data points, decision tree can’t get too big… 

Number of leaves never more than number data points 

N �
2

k
logm+ ln

1
�

✏2

Number of Decision Trees with k Leaves 

n  Number of decision trees of depth k is really 
really big: 
¨  ln |H| is about 2k log m 

n  Decision trees with up to k leaves: 
¨  |H| is about  mk k2k   

n  A very loose bound 
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PAC bound for decision trees with k 
leaves – Bias-Variance revisited 

errortrue(h)  errortrain(h) +

s
ln |H|+ ln 1

�

2N
ln |HDTs k leaves|  2k(lnm+ ln k)

errortrue(h)  errortrain(h) +

s
2k(lnm+ ln k) + ln 1

�

2N

©Carlos Guestrin 2005-2013 14 

What did we learn from decision trees? 

n  Bias-Variance tradeoff formalized 

n  Moral of the story: 
 Complexity of learning not measured in terms of size hypothesis space, 
but in maximum number of points that allows consistent classification 
¨  Complexity N – no bias, lots of variance 
¨  Lower than N – some bias, less variance 

 
 

errortrue(h)  errortrain(h) +

s
2k(lnm+ ln k) + ln 1

�

2N
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What about continuous hypothesis 
spaces? 

n  Continuous hypothesis space:  
¨  |H| = ∞ 
¨  Infinite variance??? 

n  As with decision trees, only care about the 
maximum number of points that can be 
classified exactly! 
¨ Called VC dimension… see readings for details 

errortrue(h)  errortrain(h) +

s
ln |H|+ ln 1

�

2N
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What you need to know 

n  Finite hypothesis space 
¨ Derive results 
¨ Counting number of hypothesis 
¨ Mistakes on Training data 

n  Complexity of the classifier depends on number of 
points that can be classified exactly 
¨ Finite case – decision trees 
¨  Infinite case – VC dimension 

n  Bias-Variance tradeoff in learning theory 
n  Remember: will your algorithm find best classifier? 
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Clustering 
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Clustering images 

18 [Goldberger et al.] 

Set of Images 
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Clustering web search results 
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Some Data 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints) 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! 25 ©Carlos Guestrin 2005-2013 

K-means 

n  Randomly initialize k centers 
¨   µ(0) = µ1

(0),…, µk
(0) 

n  Classify: Assign each point j∈{1,…m} to nearest 
center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨ Equivalent to µi ← average of its points! 
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What is K-means optimizing?  

n  Potential function F(µ,C) of centers µ and point 
allocations C: 

¨    

n  Optimal K-means: 
¨ minµminC F(µ,C)  

27 
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Does K-means converge??? Part 1 

n  Optimize potential function: 

n  Fix µ, optimize C 
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Does K-means converge??? Part 2 

n  Optimize potential function: 

n  Fix C, optimize µ	



29 ©Carlos Guestrin 2005-2013 

Coordinate descent algorithms 

n  Want: mina minb F(a,b) 
n  Coordinate descent: 

¨  fix a, minimize b 
¨  fix b, minimize a 
¨  repeat 

n  Converges!!! 
¨  if F is bounded 
¨  to a (often good) local optimum  

n  as we saw in applet (play with it!) 
¨  (For LASSO it converged to the optimum) 

n  K-means is a coordinate descent algorithm! 
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