What now…

- We have explored many ways of learning from data
- But…
 - How good is our classifier, really?
 - How much data do I need to make it “good enough”?
A simple setting…

- Classification
 - N data points
 - Finite number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis \(h \) that is consistent with training data
 - Gets zero error in training – \(\text{error}_{\text{train}}(h) = 0 \)
- What is the probability that \(h \) has more than \(\varepsilon \) true error?
 - \(\text{error}_{\text{true}}(h) \geq \varepsilon \)

How likely is a bad hypothesis to get \(N \) data points right?

- Hypothesis \(h \) that is consistent with training data \(\rightarrow \)
 - got \(N \) i.i.d. points right
 - \(h \) “bad” if it gets all this data right, but has high true error
- Prob. \(h \) with \(\text{error}_{\text{true}}(h) \geq \varepsilon \) gets one data point right
- Prob. \(h \) with \(\text{error}_{\text{true}}(h) \geq \varepsilon \) gets \(N \) data points right
But there are many possible hypothesis that are consistent with training data.

How likely is learner to pick a bad hypothesis?

- Prob. h with $\text{error}_{\text{true}}(h) \geq \epsilon$ gets N data points right

- There are k hypothesis consistent with data
 - How likely is learner to pick a bad one?
Union bound

- $P(A \lor B \lor C \lor D \lor \ldots)$

How likely is learner to pick a bad hypothesis

- Prob. a particular h with $\text{error}_{\text{true}}(h) \geq \varepsilon$ gets N data points right

- There are k hypothesis consistent with data
 - How likely is it that learner will pick a bad one out of these k choices?
Generalization error in finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D with N i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(error_{true}(h) > \varepsilon) \leq |H| e^{-N\varepsilon}$$

Using a PAC bound

Typically, 2 use cases:

- 1: Pick ε and δ, give you N
- 2: Pick N and δ, give you ε
Summary: Generalization error in finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D with N i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_\text{true}(h) > \varepsilon) \leq |H|e^{-N\varepsilon}$$

Even if h makes zero errors in training data, may make errors in test

Limitations of Haussler ‘88 bound

- Consistent classifier
- Size of hypothesis space
What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with $\text{error}_{\text{train}}(h)$ in training set?

Simpler question: What’s the expected error of a hypothesis?

- The error of a hypothesis is like estimating the parameter of a coin!

- Chernoff bound: for N i.i.d. coin flips, x^1, \ldots, x^N, where $x^j \in \{0,1\}$. For $0 < \epsilon < 1$:

$$P \left(\theta - \frac{1}{N} \sum_{j=1}^{N} x^j > \epsilon \right) \leq e^{-2N\epsilon^2}$$
Using Chernoff bound to estimate error of a single hypothesis

\[
P\left(\theta - \frac{1}{N} \sum_{j=1}^{N} x^j > \epsilon \right) \leq e^{-2N\epsilon^2}
\]

But we are comparing many hypothesis: **Union bound**

For each hypothesis \(h_i \):

\[
P(\text{error}_{true}(h_i) - \text{error}_{train}(h_i) > \epsilon) \leq e^{-2N\epsilon^2}
\]

What if I am comparing two hypothesis, \(h_1 \) and \(h_2 \)?
Generalization bound for $|H|$ hypothesis

Theorem: Hypothesis space H finite, dataset D with N i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$P(error_{true}(h_i) - error_{train}(h_i) > \varepsilon) \leq e^{-2N\varepsilon^2}$$

PAC bound and Bias-Variance tradeoff

$$P(error_{true}(h) - error_{train}(h) > \varepsilon) \leq e^{-2N\varepsilon^2}$$

or, after moving some terms around, with probability at least $1-\delta$:

$$error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2N}}$$

- Important: PAC bound holds for all h, but doesn’t guarantee that algorithm finds best h!!!