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What now...
* JEE
m We have explored many ways of learning from
data

m But...
How good is our classifier, really?
How much data do I'need to make it “good enough”?
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A simple setting...
" JEE
m Classification
N data points ‘i

Finite number of possible hypothesis (e.g., dec. trees
of depth d)

m A learner finds a hypothesis h that is consistent

with training data

Gets zero error in training — error,.,,(h) = 0

m \What is the probability that h has more than ¢
true error?
5
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How likely is a bad hypothesis to

. 38t N data goints right?

m Hypothesis h that is consistent with training data —
got N i.i.d. points right %<
h “bad” if it gets all this data right, but has high true error
m Prob. h with error,(h) 2 ¢ gets one data point right
less Jban 1-€

m Prob. h with error, (h) 2 ¢ gets N data points right
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But there are many possible hypothesis
that are consistent with training data
= JEE
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How likely is learner to pick a bad
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m Prob. h with error,,.(h) 2 ¢ gets N data points right
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,ZyHow likely is learner to pick a bad one? r;"" 3‘:“
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Union bound
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How likely is learner to pick a bad
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m Prob. a particular h with error,.(h) 2 ¢ gets N data
points right (l—f)“

m There are k hypothesis consistent with data

How likely is it that learner will pick a bad one out of these
k choices? N whil s 07
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Generalization error in finite

. hxggthﬁiii igagﬁﬁ [Haussler ’88]

m Theorem: Hypothesis space H finite, dataset D
with N i.i.d. samples, 0 < ¢ <1 : for any learned
hypothesis h that is consistent on the training data:

P(erroriye(h) > ¢€) < |H|6_N6
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Using a PAC bound
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m Typically, 2 use cases:  P(erroriye(h) > ¢) < |Hle™N¢
1: Pick € and 9, give you N N
2: Pick N and Ei,”gzive youe- ¢ > n 1l 4 N
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Summary: Generalization error in

7 finite h thesi PacCesS [Haussler '88]

m Theorem: Hypothesis space H finite, dataset D
with N i.i.d. samples, 0 < ¢ <1 : for any learned
hypothesis h that is consistent on the training data:

P(erroriye(h) > ¢€) < |H\6_N6
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Even if h makes zero errors in training data, may makWst
strin 2005-2013 1

"""~ OCarlos Gue:

Limitations of Haussler ‘88 bound
= —" (7707 rue (h) > €) < [Hle™™¢

m Consistent classifier
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What if our classifier does not have

zero error on the training data?
" JEE
m A learner with zero training errors may make
mistakes in test set

m What about a learner with error, ;,(h) in training set?
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Simpler question: What's the

. gxpected error of a hypothesis?

m The error of a hypothesis is like estimating the
parameter of a coin! © % =2
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m Chernoff bound: for N i.i.d. coin flips, x1,...,xN,
where xi € {0,1}. For 0<e<1:
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Using Chernoff bound to estimate

. .error of a single hypothesis
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But we are comparing many

. gaypothesis: Union bound
Foreach hypothesish; — )

P (errortrueULi) - errortrain(hi) > 6) < 6_2N52

What if | am comparing two hypothesis, h, and h,?
s b, Lot e hg?
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Generalization bound for |H|
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m Theorem: Hypothesis space H finite, dataset D
with N i.i.d. samples, 0 < e < 1 : for any learned
hypothesis h:

g P (errorirye(hi) — erroryqin(h;) > €) < em2NE _< f
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