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Sparsity 
n  Vector w is sparse, if many entries are zero: 

n  Very useful for many tasks, e.g.,  
¨  Efficiency:  If size(w) = 100B, each prediction is expensive: 

n  If part of an online system, too slow 
n  If w is sparse, prediction computation only depends on number of non-zeros 

¨  Interpretability:  What are the  
relevant dimension to make a  
prediction? 

n  E.g., what are the parts of the  
brain associated with particular  
words? 

©Carlos Guestrin 2005-2013 2 

Eat  Push  Run 

Mean of 

independently 

learned signatures 

over all nine 

participants 

Participant 

P1 

Pars opercularis 

(z=24mm) 

Postcentral gyrus 

(z=30mm) 

Superior temporal 

sulcus (posterior) 

(z=12mm) 

Figure from
 Tom

 M
itchell 



2 

Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Coordinate Descent for LASSO  
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate j at (random or sequentially) 

n  Set: 

n  Where:  

¨  For convergence rates, see Shalev-Shwartz and Tewari 2009 
n  Other common technique = LARS 

¨ Least angle regression and shrinkage, Efron et al. 2004 
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Recall: Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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From  
Kevin Murphy 
textbook 
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Now: LASSO Coefficient Path  
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From  
Kevin Murphy 
textbook 
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LASSO Example  
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Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133

From  
Rob 
Tibshirani 
slides 
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What you need to know 

n  Variable Selection: find a sparse solution to learning 
problem 

n  L1 regularization is one way to do variable selection 
¨  Applies beyond regressions 
¨  Hundreds of other approaches out there 

n  LASSO objective non-differentiable, but convex è Use 
subgradient 

n  No closed-form solution for minimization è Use 
coordinate descent 

n  Shooting algorithm is very simple approach for solving 
LASSO 
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Classification 
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THUS FAR, REGRESSION:  
PREDICT A CONTINUOUS 
VALUE GIVEN SOME INPUTS 
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Weather prediction revisted 
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Temperature 
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Reading Your Brain, Simple Example 

Animal Person 

Pairwise classification accuracy: 85% 
[Mitchell et al.] 
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Classification 

n  Learn: h:X  Y 
¨ X – features 
¨ Y – target classes 

n  Conditional probability: P(Y|X) 

n  Suppose you know P(Y|X) exactly, how should 
you classify? 
¨ Bayes optimal classifier: 

n  How do we estimate P(Y|X)? 
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Link Functions 

n  Estimating P(Y|X): Why not use standard linear 
regression? 

 
 
n  Combing regression and probability? 

¨ Need a mapping from real values to [0,1] 
¨ A link function! 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨  Assume a particular functional form for link 

function 
¨  Sigmoid applied to a linear function of the input 

features: 

Z 

Features can be discrete or continuous! 
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Understanding the sigmoid 
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Logistic Regression –  
a Linear classifier 
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Very convenient! 

implies 
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Loss function: Conditional Likelihood 

n  Have a bunch of iid data of the form: 

 

n  Discriminative (logistic regression) loss function: 
 Conditional Data Likelihood 
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Expressing Conditional Log Likelihood 
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`(w) =
X

j

yj lnP (Y = 1|xj ,w) + (1� yj) lnP (Y = 0|xj ,w)

Maximizing Conditional Log Likelihood 

Good news: l(w) is concave function of w, no local optima 
problems 

Bad news: no closed-form solution to maximize l(w) 

Good news: concave functions easy to optimize 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, η>0 

Update rule: 
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Maximize Conditional Log Likelihood: 
Gradient ascent 
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13 

Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	



    

 

  

 For i=1,…,n,  

 

 

repeat    

25 ©Carlos Guestrin 2005-2013 

(t) 

(t) 

Regularization in linear regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized least-squares (a.k.a. ridge regression), for λ>0: 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Large parameters → Overfitting 

n  If data is linearly separable, weights go to infinity 
n  Leads to overfitting: 

n  Penalizing high weights can prevent overfitting… 
©Carlos Guestrin 2005-2013 

Regularized Conditional Log Likelihood 

n  Add regularization penalty, e.g., L2: 

n  Practical note about w0: 

n  Gradient of regularized likelihood: 
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Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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Please Stop!! Stopping criterion 

n  When do we stop doing gradient descent?  

n  Because l(w) is strongly concave: 
¨  i.e., because of some technical condition 

n  Thus, stop when: 
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Stopping criterion 

n  Regularized logistic regression is strongly concave 
¨  Negative second derivative bounded away from zero: 

n  Strong concavity (convexity) is super helpful!! 

n  For example, for strongly concave l(w): 
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Convergence rates for gradient 
descent/ascent 

n  Number of Iterations to get to accuracy 

n  If func Lipschitz: O(1/ϵ2) 

n  If gradient of func Lipschitz: O(1/ϵ) 

n  If func is strongly convex: O(ln(1/ϵ)) 
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Digression: Logistic regression for 
more than 2 classes 

n  Logistic regression in more general case (k+1 classes), 
where Y in {y1,…,yR} 
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Digression: Logistic regression more 
generally 

n  Logistic regression in more general case, where  
Y in {y1,…,yR} 

 for k<R 
 
 
 

 for k=R (normalization, so no weights for this class) 
 
 

 

Learning procedure is basically the same  
as what we derived! 
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What you should know… 

n  Classification: predict discrete classes rather than 
real values 

n  Logistic regression model: Linear model 
¨ Logistic function maps real values to [0,1] 

n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
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