

Regularization in Linear Regression Overfitting usually leads to very large parameter choices, e.g.: -2.2 + 3.1 × -0.30 ײ -1.1 + 4,700,910.7 × -8,585,638.4 ײ + ... Planting Regularized or penalized regression aims to impose a "complexity" penalty by penalizing large weights "Shrinkage" method | Yeyuhayaha

LASSO Regression

>>0

- LASSO: least absolute shrinkage and selection operator
- New objective:

©Carlos Guestrin 2005-2013

Coordinate Descent for LASSO (aka Shooting Algorithm)

- - Repeat until convergence

 □ Pick a coordinate j at (random or sequentially)

$$\hat{w}_{\ell} = \left\{ \begin{array}{ll} (c_{\ell} + \lambda)/a_{\ell} & c_{\ell} < -\lambda \\ 0 & c_{\ell} \in [-\lambda, \lambda] \\ (c_{\ell} - \lambda)/a_{\ell} & c_{\ell} > \lambda \end{array} \right.$$

 $\begin{aligned} & \text{Set:} \\ & \hat{w}_{\ell} = \left\{ \begin{array}{ll} (c_{\ell} + \lambda)/a_{\ell} & c_{\ell} < -\lambda \\ 0 & c_{\ell} \in [-\lambda, \lambda] \\ (c_{\ell} - \lambda)/a_{\ell} & c_{\ell} > \lambda \end{array} \right. \end{aligned}$ $\begin{aligned} & \text{Where:} \\ & a_{\ell} = 2\sum_{j=1}^{N}(h_{\ell}(\mathbf{x}_{j}))^{2} \\ & c_{\ell} = 2\sum_{j=1}^{N}h_{\ell}(\mathbf{x}_{j}) \left(t(\mathbf{x}_{j}) - (w_{0} + \sum_{i \neq \ell}w_{i}h_{i}(\mathbf{x}_{j}))\right) \end{aligned}$

- ☐ For convergence rates, see Shalev-Shwartz and Tewari 2009
- Other common technique = LARS
 - □ Least angle regression and shrinkage, Efron et al. 2004

LAS	SO Ex	ample			
	Term	Least Squares	Ridge	Lasso	
	Intercept	2.465	2.452	2.468	
	lcavol	0.680	0.420	0.533	From
	lweight	0.263	0.238	0.169	Rob Tibshirani
	age	-0.141	-0.046		slides
	lbph	0.210	0.162	0.002	
	svi	0.305	0.227	0.094	
	lcp	-0.288	0.000		
	gleason	-0.021	0.040		
	pgg45	0.267	0.133		
		©Carlos Guestrin 2005-20	113		8

What you need to know

- Variable Selection: find a sparse solution to learning problem
- L₁ regularization is one way to do variable selection
 - □ Applies beyond regressions
 - ☐ Hundreds of other approaches out there
- LASSO objective non-differentiable, but convex → Use subgradient
- No closed-form solution for minimization → Use coordinate descent
- Shooting algorithm is very simple approach for solving LASSO

©Carlos Guestrin 2005-2013

9

Classification Logistic Regression Machine Learning – CSE446 Carlos Guestrin University of Washington April 15, 2013

Link Functions

■ Estimating P(Y|X): Why not use standard linear regression?

- Combing regression and probability?
 - □ Need a mapping from real values to [0,1]
 - □ A link function!

©Carlos Guestrin 2005-2013

Logistic Regression

Logistic function

function (or Sigmoid):
$$\frac{1}{1 + exp(-z)}$$

Learn P(Y|X) directly

- ☐ Assume a particular functional form for link
- □ Sigmoid applied to a linear function of the input

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

Features can be discrete or continuous!

Understanding the sigmoid $g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$ $w_0 = -2, w_1 = -1 \qquad w_0 = 0, w_1 = -1 \qquad w_0 = 0, w_1 = -0.5$

©Carlos Guestrin 2005-2013

Very convenient!

$$P(Y = 0 \mid X = \langle X_1, ... X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 1 \mid X = < X_1, ... X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y=1|X)}{P(Y=0|X)} = exp(w_0 + \sum_i w_i X_i)$$

linear classification rule!

implies

$$\ln \frac{P(Y = 1 | X)}{P(Y = 0 | X)} = w_0 + \sum_i w_i X_i$$

©Carlos Guestrin 2005-2013

40

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form:
- Discriminative (logistic regression) loss function:
 Conditional Data Likelihood

$$\ln P(\mathcal{D}_Y \mid \mathcal{D}_{\mathbf{X}}, \mathbf{w}) = \sum_{j=1}^{N} \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

Expressing Conditional Log Likelihood

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) \equiv \sum_j \ln P(y^j | \mathbf{x}^j, \mathbf{w})$$

$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$\ell(\mathbf{w}) = \sum_{j} y^{j} \ln P(Y = 1 | \mathbf{x}^{j}, \mathbf{w}) + (1 - y^{j}) \ln P(Y = 0 | \mathbf{x}^{j}, \mathbf{w})$$

©Carlos Guestrin 2005-2013

21

Maximizing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} y^{j} (w_{0} + \sum_{i} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i} w_{i} x_{i}^{j}))$$

Good news: $I(\mathbf{w})$ is concave function of \mathbf{w} , no local optima problems

Bad news: no closed-form solution to maximize I(w)

Good news: concave functions easy to optimize

©Carlos Guestrin 2005-2013

Optimizing concave function – Gradient ascent

Gradient:
$$\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$$

Step size, η>0

Update rule: $\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

- Gradient ascent is simplest of optimization approaches
 - □ e.g., Conjugate gradient ascent can be much better

©Carlos Guestrin 2005-2013

23

Maximize Conditional Log Likelihood: Gradient ascent

$$l(\mathbf{w}) = \sum_{j} y^{j} (w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$$

©Carlos Guestrin 2005-2013

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For i=1,...,n,
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

©Carlos Guestrin 2005-2013

..

Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:

Regularized least-squares (a.k.a. ridge regression), for λ>0:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^k w_i^2$$

©Carlos Guestrin 2005-2013

--

Large parameters → Overfitting

- If data is linearly separable, weights go to infinity
- Leads to overfitting:
- Penalizing high weights can prevent overfitting...

©Carlos Guestrin 2005-2013

27

Regularized Conditional Log Likelihood

■ Add regularization penalty, e.g., L₂:

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \lambda ||\mathbf{w}||_{2}^{2}$$

- Practical note about w₀:
- Gradient of regularized likelihood:

©Carlos Guestrin 2005-2013

--

Standard v. Regularized Updates

$$\begin{split} \mathbf{w}^* &= \arg\max_{\mathbf{w}} \ln \left[\prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \\ w_i^{(t+1)} &\leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = \mathbf{1} \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \end{split}$$

Regularized maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j} P(y^j | \mathbf{x}^j, \mathbf{w}) \right] - \lambda \sum_{i>0} w_i^2$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_{j} x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

Please Stop!! Stopping criterion

- When do we stop doing gradient descent?
- Because *l*(**w**) is strongly concave:
 - □ i.e., because of some technical condition

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

Thus, stop when:

Stopping criterion

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^j | \mathbf{x}^j, \mathbf{w})) - \lambda ||\mathbf{w}||_2^2$$

- Regularized logistic regression is strongly concave
 - □ Negative second derivative bounded away from zero:
- Strong concavity (convexity) is super helpful!!
- For example, for strongly concave *l*(**w**):

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

©Carlos Guestrin 2005-201

31

Convergence rates for gradient descent/ascent

Number of Iterations to get to accuracy

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \epsilon$$

- If func Lipschitz: $O(1/\epsilon^2)$
- If gradient of func Lipschitz: O(1/ε)
- If func is strongly convex: O(ln(1/є))

©Carlos Guestrin 2005-2013

Digression: Logistic regression for more than 2 classes

 Logistic regression in more general case (k+1 classes), where Y in {y₁,...,y_R}

©Carlos Guestrin 2005-201

33

Digression: Logistic regression more generally

Logistic regression in more general case, where
 Y in {y₁,...,y_R}

for k<R

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki} X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

for k=R (normalization, so no weights for this class)

$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

Learning procedure is basically the same as what we derived!

©Carlos Guestrin 2005-2013

What you should know...

- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model

 □ Logistic function maps real values to [0,1]
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization

©Carlos Guestrin 2005-2013