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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Variable Selection 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose features with largest coefficients in ridge solution 
¨  Computationally intractable to perform “all subsets” regression 

n  Try new penalty: Penalize non-zero weights 
¨  Regularization penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 
¨  This simple approach has changed statistics, machine learning & electrical 

engineering  
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LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Geometric Intuition for Sparsity 
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Optimizing the LASSO Objective 
n  LASSO solution: 
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Coordinate Descent 
n  Given a function F 

¨  Want to find minimum 

n  Often, hard to find minimum for all coordinates, but easy for one coordinate 
 
n  Coordinate descent: 

n  How do we pick next coordinate? 

n  Super useful approach for *many* problems 
¨  Converges to optimum in some cases, such as LASSO 
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Optimizing LASSO Objective  
One Coordinate at a Time 

n  Taking the derivative: 
¨  Residual sum of squares (RSS):  

 
 
 
¨  Penalty term: 
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at w iff function differentiable at w 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 
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Taking the Subgradient 

n  Gradient of RSS term: 

 
   

¨  If no penalty: 

n  Subgradient of full objective: 
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Setting Subgradient to 0 
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Soft Thresholding  
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Coordinate Descent for LASSO  
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate l at (random or sequentially) 

n  Set: 

n  Where:  

¨  For convergence rates, see Shalev-Shwartz and Tewari 2009 
n  Other common technique = LARS 

¨ Least angle regression and shrinkage, Efron et al. 2004 
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Recall: Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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Now: LASSO Coefficient Path  
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From  
Kevin Murphy 
textbook 
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LASSO Example  
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Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133
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What you need to know 

n  Variable Selection: find a sparse solution to learning 
problem 

n  L1 regularization is one way to do variable selection 
¨  Applies beyond regressions 
¨  Hundreds of other approaches out there 

n  LASSO objective non-differentiable, but convex è Use 
subgradient 

n  No closed-form solution for minimization è Use 
coordinate descent 

n  Shooting algorithm is very simple approach for solving 
LASSO 
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