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Linear Separability: More formally, Using Margin
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Perceptron Analysis: Linearly Separable Case
" JEE
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Beyond Linearly Separable Case
"

m  Perceptron algorithm_is super cool!

No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid

Makes a fixed number of mistakes, and it's
done for ever! & 2\t + -
%) ¢

= Even if you see infinite data

7 + * v T
m  However, real world not linearly separable + -+ ¢
Can’t expect ng\ﬂto\r‘r;_’akenﬂstaﬁs_aqgin -~ - =
Analysis extends to non-linearly separable + 4 * = -
case + - -

Very similar bound, see Freund & Schapire
Converges, but ultimately may not give good

accuracy (make many many many mistakes)
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What if the data is not linearly separable?

n W
Use features of features
of featuqes of features..
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A grows fast!

number of input dimensions =6, m=100

m 1.6 billion terms
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Perceptron Revisited
* JEE—

m  Given weight vector w®, predict point x by:

Mistake at time £ wt*1) = w(h + y( x(®

Thus, write weight vector in terms of mistaken data points only:
Let M® be time steps up to t when mistakes were made:

Prediction rule now:

When using high dimensional features:
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Dot-product of polynomials

" JEE
d(u) - P(v) = polynomials of degree exactly d
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Finally the Kernel Trick!!!
(Kernelized Perceptron

m Every time you make a mistake, remember (x®,y®)

m Kernelized Perceptron prediction for x:

sign(w(t) co(x)) = Z y(j)¢(x(j)) - (%)

jeEM®)

— Z y(j)k(x(j),x)

FEM)

Polynomial kernels
" JEE

m All monomials of degree d in O(d) operations:
d(u)-P(v) = (uv)? = polynomials of degree exactly d

m How about all monomials of degree up to d?
Solution 0:

Better solution:
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Common kernels
" JEE
m Polynomials of degree exactly d
K(u,v) = (u-v)?
m Polynomials of degree up to d
K(u,v)=(u-v+1)~4
m Gaussian (squared exponential) kernel
K(u,v) = exp <_|]u2—2v||)
m Sigmoid 7
K(u,v) =tanh(gu-v 4+ v)

What you need to know
" JEE—
m Notion of online learning
m Perceptron algorithm
m Mistake bounds and proofs
m The kernel trick
m Kernelized Perceptron
m Derive polynomial kernel
m Common kernels

m |n online learning, report averaged weights at the end
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Support Vector
Machines
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Linear classifiers — Which line is better?
"




Pick the one with the largest margin!

&  “confidence” = v (w - x? + wp)
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Maximize the margin
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But there are many planes...
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Margin 2.Y

Margin maximization using

. gangnigal Dyperplanes

. max
Unnormalized  ~,w,wo v

problem:

- Normalized Problem:

Margjn 2y

min [
>y Wo

y (w-x) +w) >1,¥j €{l,...,N}
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Support vector machines (SVMs)

“
min ||w]|3
wW,w0
vl (w-x) +wo) > 1,¥5 € {1,...,N}

m Solve efficiently by many methods,

W0=_1

+
d
g -

- e.g.,

quadratic programming (QP)
- »  Well-studied solution algorithms
Stochastic gradient descent
m Hyperplane defined by support

vectors
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What if the data is not linearly

B} rable?
Use features of features
.t of features of features....
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What if the data is still not linearly

? .
. seﬁarable. min ul

yj(w-xj—i—wo)Zl , Vi

+ + _ = [|fdatais not linearly separable, some
& = _ points don’t satisfy margin constraint:
+ =
+ o+ + =
& - - m How bad is the violation?
% -
- = =
S

m Tradeoff margin violation with ||w||:

SVMs for Non-Linearly Separable meet

my friend the Perceptron...
" J
m Perceptron was minimizing the hinge loss:
N

Z (_yj (w x4 ’LUO))+

m  SVMs minimizes the regularized hinge loss!!

N
IwlZ+ 0> (1= g/ (w-x7 + ).,
j=1
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Stochastic Gradient Descent for SVMs

m Perceptron minimization: m  SVMs minimization:

N N
z:(—yj(vv-xj+wo))+ HWH§+CZ(1—yj(W'Xj+wo))+
=1 =1

m  SGD for Perceptron: m SGD for SVMs:

WD) w® g [yu)(w(t) x®) < o] yOx®
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What you need to know
" JEE
m Maximizing margin
m Derivation of SVM formulation
m Non-linearly separable case
Hinge loss
A.K.A. adding slack variables
m SVMs = Perceptron + L2 regularization
m Can optimize SVMs with SGD
Many other approaches possible
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