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Linear Separability: More formally, Using Margin  

n  Data linearly separable, if there exists 
¨ a vector 
¨ a margin  

n  Such that 
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Perceptron Analysis: Linearly Separable Case 

n  Theorem [Block, Novikoff]:  
¨  Given a sequence of labeled examples: 

¨  Each feature vector has bounded norm: 

¨  If dataset is linearly separable: 

n  Then the number of mistakes made by the online perceptron on this sequence is 
bounded by 
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Beyond Linearly Separable Case 
n  Perceptron algorithm is super cool! 

¨  No assumption about data distribution!  
n  Could be generated by an oblivious adversary, 

no need to be iid 
¨  Makes a fixed number of mistakes, and it’s 

done for ever! 
n  Even if you see infinite data 

 
n  However, real world not linearly separable 

¨  Can’t expect never to make mistakes again 
¨  Analysis extends to non-linearly separable 

case 
¨  Very similar bound, see Freund & Schapire  
¨  Converges, but ultimately may not give good 

accuracy (make many many many mistakes) 
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What if the data is not linearly separable? 

Use features of features  
of features of features…. 

Feature space can get really large really quickly! 
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Higher order polynomials 

number of input dimensions 
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m – input features 
d – degree of polynomial 

grows fast! 
d = 6, m = 100 
about 1.6 billion terms 
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Perceptron Revisited 
n  Given weight vector w(t), predict point x by: 

n  Mistake at time t: w(t+1) = w(t) + y(t) x(t) 

n   Thus, write weight vector in terms of mistaken data points only: 
¨  Let M(t) be time steps up to t when mistakes were made: 

n  Prediction rule now: 

n  When using high dimensional features: 
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Dot-product of polynomials 

exactly d 
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Finally the Kernel Trick!!! 
(Kernelized Perceptron  

n  Every time you make a mistake, remember (x(t),y(t)) 

n  Kernelized Perceptron prediction for x: 
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sign(w(t) · �(x)) =
X

j2M(t)

y(j)�(x(j)) · �(x)

=
X

j2M(t)

y(j)k(x(j),x)
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Polynomial kernels 

n  All monomials of degree d in O(d) operations: 

n  How about all monomials of degree up to d? 
¨ Solution 0:  

¨ Better solution: 

exactly d 
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Common kernels 

n  Polynomials of degree exactly d 

n  Polynomials of degree up to d 

n  Gaussian (squared exponential) kernel 

n  Sigmoid 
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What you need to know 

n  Notion of online learning 
n  Perceptron algorithm 
n  Mistake bounds and proofs 
n  The kernel trick 
n  Kernelized Perceptron 
n  Derive polynomial kernel 
n  Common kernels 
n  In online learning, report averaged weights at the end 
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Linear classifiers – Which line is better? 



8 

©2005-2007 Carlos Guestrin 15 

Pick the one with the largest margin! 

w
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 +
 w
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“confidence” = yj(w · xj
+ w0)
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Maximize the margin 

w
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max
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�

yj(w · xj
+ w0) � �, 8j 2 {1, . . . , N}
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But there are many planes… 
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Review: Normal to a plane 
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A Convention: Normalized margin – 
Canonical hyperplanes 
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Margin maximization using 
canonical hyperplanes 

w
.x

 +
 w

0 
= 

+1
 

w
.x

 +
 w

0 
= 

-1
 

w
.x

 +
 w

0 
= 

0 

margin 2γ	


max

�,w,w0

�

yj(w · xj
+ w0) � �, 8j 2 {1, . . . , N}

min
w,w0

||w||22

yj(w · xj + w0) � 1, 8j 2 {1, . . . , N}

Unnormalized  
problem: 

Normalized Problem:  
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Support vector machines (SVMs) 
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n  Solve efficiently by many methods, 
e.g., 
¨  quadratic programming (QP) 

n  Well-studied solution algorithms 

¨  Stochastic gradient descent  

n  Hyperplane defined by support 
vectors 

min
w,w0

||w||22

yj(w · xj + w0) � 1, 8j 2 {1, . . . , N}
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What if the data is not linearly 
separable? 

Use features of features  
of features of features…. 
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What if the data is still not linearly 
separable? 

n  If data is not linearly separable, some 
points don’t satisfy margin constraint: 

n  How bad is the violation? 

n  Tradeoff margin violation with ||w||: 

min
w,w0

||w||22

yj(w · xj + w0) � 1 , 8j

SVMs for Non-Linearly Separable meet 
my friend the Perceptron…  

n  Perceptron was minimizing the hinge loss: 

 
 

n  SVMs minimizes the regularized hinge loss!!  
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Stochastic Gradient Descent for SVMs 

n  Perceptron minimization: 

n  SGD for Perceptron: 

n  SVMs minimization: 

n  SGD for SVMs: 
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y(t)(w(t) · x(t))  0

i
y(t)x(t)
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What you need to know 

n  Maximizing margin 
n  Derivation of SVM formulation 
n  Non-linearly separable case 

¨ Hinge loss 
¨ A.K.A. adding slack variables 

n  SVMs = Perceptron + L2 regularization 
n  Can optimize SVMs with SGD 

¨ Many other approaches possible 


