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Why not just use Linear Regression?
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Using data to predict new data
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Univariate 1-Nearest Neighbor
" SEE—

Given datapoints (x7,y?) (x2,y2)..(xN,yN),where we assume y'=f(x/) for some

unknown function f.

Given query point x9, your job is to predict )A) ~ f(x")
Nearest Neighbor: -
1. Find the closest x; in our set of datapoints

j(nn) = argmin|x’ - x|
J

H o) _ i(mz) @
2. Predict y=y o &5
Here’s a N Ry
. N
dataset with ( |
one input, one Here, JQ'e‘“‘s is
output and four datapoint

datapoints.
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1-Nearest Neighbor is an example of....

Instance-based learning
* JE

A function approximator

since about 1910.

~
that has been around \ /
X
X
X

To make a prediction, )((‘
search database for

similar datapoints, and fit
with the local points.

Four things make a memory based learner:

n A distance metric

How many nearby neighbors to look at?

n
L] A weightingfunction (optional)
| |

How to fit with the local points?
"\-—-—u__\_‘

©Carlos Guestrin 2005-2013




1-Nearest Neighbor

“

Four things make a memory based learner:

1. A distancsa {netric \| “‘L —
Euclidian (and many more)

2. How many nearby neighbors to look at?
One

3. A weighting function (optional)
Unused

ha

How to fit with the local points?
Just predict the same output as the nearest neighbor.
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Multivariate distance metrics

- N
l\(’ﬂ{‘h}: (X\’%\) t
Suppose the input vectors x', x2, ...xN are two dimensional: ' :‘),_
x'=(x",,x7,),x2=(x2;,x%), .. xN=(xN, xN,). 61'\(1
One can draw the nearest-neighbor regions in input space.
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Dist(xi,x}) = (x'; — X )2 + (X', — X2 Dist(x,x}) =(x', — Xj7)2+6<ng2)2

The relative scalings in the distance metric affect region shapes [(f" I)SS )(z
iyt e
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Euclidean distance metric 44, sudos.,
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D(x,x') = Eaiz(xi - X, )2 -
Or equivalently, - —
where D(X,X')=\/(X-X')TE(X-X')
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Other Metrics...,/ Z "F Aiagn)
= Mahalanobis, Rank-based, Correlation-based,...




Notable distance metrics
(and their level sets)

Scaled Euclidian (L))

e vt e
, (P _ LL‘M $ "
i '\‘,SW(' L, norm (absolute)

~ L

Mahalanobis (here,
X on the previous slide is not
necessarily diagonal, but is
symmetric

L1 (max) norm
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Consistency of 1-NN
" JEE—

Consider an estimator f, trained on n examples
— i e

e.g., 1-NN, neural nets, regression,...

Estimator is consistent if true error goes to zero as
~—— —_
amount of data increases
adlid TLreds
eqg., fc')‘z no noise‘data, consistent if:

. A Shnaed Lrves
A, V() = 0

”H\J&.} [iwar .
Regression is not consistent!

Representation bias 0l‘|n71/ ;o.,,,ﬁ-y,-v
1-NN is consistent (under some mild fineprint) /

What about variance??? |
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1-NN overfits?
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k-Nearest Neighbor
" S

Four things make a memory based learner:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?

k

1. A weighting function (optional)
Unused

2. How fo fit with the local points?
Just predict the average output among the k nearest neighbors.
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k-Nearest Neighbor (here k=9)
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K-nearest neighbor for function fitting smoothes away noise, but there are
clear deficiencies.

What can we do about all the dlscontlnumes that k-NN gives us?
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Weighted k-NNs
" JEE
m Neighbors are not all the same
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Four things make a memory based learner;
1.

ol heev

Kernel regression §p_{ Lok St
o

-

o 8y
Conbided e
[ 'h-ql'
aokk; )

A distance metric 7 p
Euclidjan (and many more) "3(""(1"'1
How many nearby neighbors to look at? ' , 1
All of them TGN
A weighting function (optional) 6 7"
_» ™ =exp(-D(x, query)*/ p?)

Nearby points to the query are weighted strongly, far points
weakly. The p parameter is the Kernel Width. Very
important.

How to fit with the local points?
Predict the weighted average of the outputs:
predict = Xy / £
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Weighting functions

gc_i 1/d+2 1/(d+l)
' = exp(-D(x, query)? / p?) 10 10 L
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Typically optimize p using | Aebon (Our examples use Gaussian)
va

gradient descent o~ ()
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Kernel regression predictions
* JEE
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Increasing the kernel width p means further away points get an
opportunity to influence you.
As g2, the prediction tends to the global average.
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Kernel regression on our test cases
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p=1/32 of x-axis width.

p=1/32 of x-axis width.

Sl ks

p=1/16 axis width.

Choosing a good p is important. Not just for Kernel Regression, but for
all the locally weighted learners we’re about to see.
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Kernel regression can look bad
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p = Best. p = Best. p = Best.

Time to try something more powerful...
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Locally weighted regression
" JEE—

Kernel regression:

Take a very very conservative function approximator
called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called
LINEAR REGRESSION. Locallx weight it.
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Locally weighted regression
" JEE

Four things make a memory based learner:
(] A distance metric

Any
u Hovrfnany nearby neighbors to look at?
All of them
~—
[ A weighting function (optional)
Kernels

mi = exp(-D(x’ query)?/ p?)
m  How to fit with the local points?
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Another view of LWR

kernel too wide - includes nonlinear region

‘/kemel just right

kernel too narrow - excludes some of linear region
—

Image from Cohn, D.A., Gk i, Z., and Jol

Learning with Statistical Models", JAIR Volume 4, pages #20-145.

LWR on our test cases
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p = 1/16 of x-axis width.  p = 1/32 of x-axis width. p§<gl8 of x-axis width.
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Locally weighted polynomial regression
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Kernel Regression LW Linear Regression LW Quadratic Regression
Kernel width p at optimal Kernel width p at optimal Kernel width p at optimal
level. level. level.
p = 1/100 x-axis p = 1/40 x-axis p = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the X

matrix. As the regression degree increases, the kernel width can
increase without introducing bias.
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Curse of dimensionality for

iniﬁnce-based learning

m Must store and retreve all data!
Most real work done during testing

For every test sample, must search through all dataset — very slow!
There are (sometimes) fast methods for dealing with large datasets

m Instance-based learning often poor with noisy or irrelevant
features —
—
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Curse of the irrelevant feature
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What you need to know about

. iniiangﬁ-based learning

m k-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach
Picking k?

m Kernel regression

Set k to n (number of data points) and optimize weights by gradient
descent

Smoother than k-NN
m Locally weighted regression
Generalizes kernel regression, not just local average
m Curse of dimensionality
Must remember (very large) dataset for prediction
Irrelevant features often killers for instance-based approaches

©Carlos Guestrin 2005-2013 30

15



Acknowledgment
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m This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:

http://www.cs.cmu.edu/~awm/tutorials
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