







### **Univariate 1-Nearest Neighbor**



Given datapoints  $(x^1, y^1)$   $(x^2, y^2)$ .. $(x^N, y^N)$ , where we assume  $y^i = f(x^i)$  for some unknown function f.

Given query point  $x^q$ , your job is to predict  $\hat{y} \approx f(x^q)$ Nearest Neighbor:

1. Find the closest  $x_i$  in our set of datapoints

$$j(nn) = \operatorname{argmin} | x^j - x^q |$$

2. Predict  $\hat{y} = y^{i(nn)}$ 

Here's a dataset with one input, one output and four datapoints.



©Carlos Guestrin 2005-201

1-Nearest Neighbor is an example of....

#### **Instance-based learning**



A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.



#### Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

©Carlos Guestrin 2005-201

## 1-Nearest Neighbor



#### Four things make a memory based learner:

1. A distance metric

- 11.112
- Euclidian (and many more)
- How many nearby neighbors to look at?

  One
- 3. A weighting function (optional)

#### Unused

4. How to fit with the local points?

Just predict the same output as the nearest neighbor.

$$= \frac{9790000}{9} ||y^{j-1}||^{4}$$
 $= \frac{9}{9} ||y^{j-1}||^{4}$ 

©Carlos Guestrin 2005-201













# k-Nearest Neighbor



#### Four things make a memory based learner:

1. A distance metric

#### **Euclidian (and many more)**

2. How many nearby neighbors to look at?

k

n. A weighting function (optional)

Unused

Onabba

2. How to fit with the local points?

Just predict the average output among the k nearest neighbors.

 $VN(x^2) \in K$  rearest reighbors regression  $\vec{y}^2 = \int_{K} \vec{y} \in NN(x^2) \qquad \text{classification} \\
\vec{y} = \int_{K} \vec{y} \cdot \vec{y} \cdot \vec{y} \cdot \vec{y} = \int_{K} \vec{y} \cdot \vec{y}$ 

Carlos Guestrin 2005-2013















# Locally weighted regression



#### Kernel regression:

Take a very very conservative function approximator called AVERAGING. Locally weight it.

#### Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

©Carlos Guestrin 2005-2013

# Locally weighted regression

- - Four things make a memory based learner:
  - A distance metric
    - Any
  - How many nearby neighbors to look at?

All of them

A weighting function (optional)

Kernels

- How to fit with the local points?

General weighted regression:  $\hat{N} = \sum_{k=1}^{N} \sum_{k$ 

$$\hat{w}^q = \underset{w}{\operatorname{argmin}} \sum_{k=1}^{N} \pi_q^k \left( y_k^k - \frac{w^T x^k}{1 + \frac{1}{1 + \frac{1}$$

©Carlos Guestrin 2005-2013









# Curse of dimensionality for instance-based learning Must store and retreve all data! Most real work done during testing For every test sample, must search through all dataset – very slow! There are (sometimes) fast methods for dealing with large datasets Instance-based learning often poor with noisy or irrelevant features Thm: Man Acta Jan Aced is expired in the sum of the search as the picking datasets.



# What you need to know about instance-based learning

- k-NN
  - ☐ Simplest learning algorithm
  - □ With sufficient data, very hard to beat "strawman" approach
  - □ Picking k?
- Kernel regression
  - Set k to n (number of data points) and optimize weights by gradient descent
  - □ Smoother than k-NN
- Locally weighted regression
  - □ Generalizes kernel regression, not just local average
- Curse of dimensionality
  - □ Must remember (very large) dataset for prediction
  - □ Irrelevant features often killers for instance-based approaches

©Carlos Guestrin 2005-2013

# Acknowledgment



- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
  - □ http://www.cs.cmu.edu/~awm/tutorials

©Carlos Guestrin 2005-201