

Back to Unsupervised Learning of Mixtures of Gaussians – a simple version

A simple case:

We have unlabeled data $\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_m$ We know there are k classes We know $P(y_1) \ P(y_2) \ P(y_3) \ \dots \ P(y_k)$ We don't know $\mathbf{\mu}_1 \ \mathbf{\mu}_2 \ \dots \ \mathbf{\mu}_k$

We can write P(data | μ_1 μ_k)

$$= p(x_1...x_m | \mu_1...\mu_k)$$

$$= \prod_{j=1}^{m} p(x_j | \mu_1...\mu_k)$$

$$= \prod_{j=1}^{m} \sum_{i=1}^{k} p(x^j | \mu_i) P(y = i)$$

$$\propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp\left(-\frac{1}{2\sigma^2} ||x^j - \mu_i||^2\right) P(y = i)$$

©Carlos Guestrin 2005-20

EM for simple version of Mixtures

of Gaussians: The E-step

If we know $\mu_1, \dots, \mu_k \rightarrow \text{easily compute prob.}$ $\text{point } x^j \text{ belongs to class } y \text{=} i$

$$p(y=i|x^{j},\mu_{1}...\mu_{k}) \propto \exp\left(-\frac{1}{2\sigma^{2}}||x^{j}-\mu_{i}||^{2}\right)P(y=i)$$

©Carlos Guestrin 2005-2013

EM for simple version of Mixtures of Gaussians: The M-step

- If we know prob. point x^j belongs to class y=i
 → MLE for µ_i is weighted average
 - \square imagine k copies of each x^j , each with weight $P(y=i|x^j)$:

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x^{j}) x^{j}}{\sum_{j=1}^{m} P(y=i|x^{j})}$$

©Carlos Guestrin 2005-2013

E.M. for Simple version of Mixtures of Gaussians

E-step

Compute "expected" classes of all datapoints for each class

$$p(y=i|x^{j},\mu_{1}...\mu_{k}) \propto \exp\left(-\frac{1}{2\sigma^{2}} \|x^{j} - \mu_{i}\|^{2}\right) P(y=i)$$

Just evaluate a Gaussian at

M-step

Compute Max. like μ given our data's class membership distributions

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x^{j}) x^{j}}{\sum_{j=1}^{m} P(y=i|x^{j})}$$

©Carlos Guestrin 2005-201

E.M. Convergence

- EM is coordinate ascent on an interesting potential function
- Coord. ascent for bounded pot. func.! convergence to a local optimum guaranteed

This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data

©Carlos Guestrin 2005-2013

E.M. for axis-aligned GMM

Iterate. On the t'th iteration let our estimates be

$$\lambda_t = \{\, \mu_1{}^{(t)}, \, \mu_2{}^{(t)} \, \ldots \, \mu_k{}^{(t)}, \, \Sigma_1{}^{(t)}, \, \Sigma_2{}^{(t)} \, \ldots \, \Sigma_k{}^{(t)}, \, p_1{}^{(t)}, \, p_2{}^{(t)} \, \ldots \, p_k{}^{(t)} \, \}$$

iteration

Compute "expected" classes of all datapoints for each class

$$P\left(y=i\left|x^{j},\lambda_{i}\right)\propto p_{i}^{(t)}p\left(x^{j}\left|\mu_{i}^{(t)},\Sigma_{i}^{(t)}\right.\right)$$
Just evaluate a Gaussian at x^{j}

M-step

Compute Max. like μ given our data's class membership distributions

$$\mu_i^{(t+1)} = \frac{\sum_{j} P(y=i | x^j, \lambda_t) x^j}{\sum_{j} P(y=i | x^j, \lambda_t)}$$

$$p_i^{(t+1)} = \frac{\sum_{j} P(y=i | x^j, \lambda_t)}{m}$$

$$p_i^{(t+1)} = \frac{\sum_{j} P(y = i | x^j, \lambda_t)}{m}$$
 m = #records

©Carlos Guestrin 2005-2013

E.M. for General GMMs

Iterate. On the t'th iteration let our estimates be

 $p_i^{(t)}$ is shorthand for estimate of prior P(y=i) on t'th iteration

$$\lambda_{t} = \{ \mu_{1}^{(t)}, \mu_{2}^{(t)} \dots \mu_{k}^{(t)}, \Sigma_{1}^{(t)}, \Sigma_{2}^{(t)} \dots \Sigma_{k}^{(t)}, p_{1}^{(t)}, p_{2}^{(t)} \dots p_{k}^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints for each class

$$P\left(y=i\left|x^{j},\lambda_{t}\right.\right) \propto p_{i}^{(t)}p\left(x^{j}\left|\mu_{i}^{(t)},\Sigma_{i}^{(t)}\right.\right)$$
Just evaluate a Gaussian at x^{j}

M-step

Compute Max. like μ given our data's class membership distributions

$$\mu_{i}^{(t+1)} = \frac{\sum_{j} P\left(y = i \left| x^{j}, \lambda_{t} \right) x^{j}}{\sum_{j} P\left(y = i \left| x^{j}, \lambda_{t} \right) } \qquad \qquad \sum_{i}^{(t+1)} = \frac{\sum_{j} P\left(y = i \left| x^{j}, \lambda_{t} \right) \left[x^{j} - \mu_{i}^{(t+1)} \right] \left[x^{j} - \mu_{i}^{(t+1)} \right]^{T}}{\sum_{j} P\left(y = i \left| x^{j}, \lambda_{t} \right) }$$

$$p_{i}^{(t+1)} = \frac{\sum_{j} P\left(y = i \left| x^{j}, \lambda_{t} \right) \right]}{m} \qquad \qquad m = \#\text{records}$$

Gaussian Mixture Example: Start

What you should know

- K-means for clustering:
 - □ algorithm
 - □ converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - ☐ How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- EM is coordinate ascent

©Carlos Guestrin 2005-2013

27

Acknowledgements

- K-means & Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
 - □ http://www.autonlab.org/tutorials/
- K-means Applet:
 - □ http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial-html/AppletKM.html
- Gaussian mixture models Applet:
 - □ http://www.neurosci.aist.go.jp/%7Eakaho/ MixtureEM.html

©Carlos Guestrin 2005-2013

28

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - □ e.g., text data has
- **Dimensionality reduction**: represent data with fewer dimensions
 - □ easier learning fewer parameters
 - □ visualization hard to visualize more than 3D or 4D
 - □ discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

©Carlos Gue**30**in 2005-201

Lower dimensional projections

 Rather than picking a subset of the features, we can new features that are combinations of existing features

■ Let's see this in the unsupervised setting □ just **X**, but no Y

©Carlos Gue**8t**fin 2005-2013

Principal component analysis – basic idea

- □ e.g., project space of 10000 words into 3-dimensions
- □ e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error

©Carlos Gue**80**in 2005-2013

Linear projections, a review

- Project a point into a (lower dimensional) space:
 - \square point: $\mathbf{x} = (x_1, ..., x_d)$
 - \square select a basis set of basis vectors $(\mathbf{u}_1,...,\mathbf{u}_k)$
 - we consider orthonormal basis:
 - □ **u**_i•**u**_i=1, and **u**_i•**u**_i=0 for i≠j
 - \square select a center \overline{x} , defines offset of space
 - □ **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\mathbf{x} \mathbf{x}) \cdot \mathbf{u}_i$
 - minimum squared error

©Carlos Gue**s#**in 2005-2013

PCA finds projection that minimizes reconstruction error

- Given m data points: $\mathbf{x}^i = (x_1^i, ..., x_d^i)$, i=1...N
- Will represent each point as a projection:

$$\quad \quad \square \quad \hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z^i_j \mathbf{u}_j \quad \text{where: } \ \bar{\mathbf{x}} = \frac{1}{\mathsf{N}} \sum_{i=1}^\mathsf{N} \mathbf{x}^i \quad \text{and} \quad z^i_j = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

- PCA:
 - □ Given k<<d, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^{N} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

@Carlos Gue**36**in 2005-2013

Understanding the reconstruction

Note that **x**ⁱ can be represented exactly by d-dimensional projection:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^{\mathsf{d}} z^i_j \mathbf{u}_j$$

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z^i_j \mathbf{u}_j$$

 $z_i^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_i$ □Given k<<d, find $(\mathbf{u}_1,...,\mathbf{u}_k)$

minimizing reconstruction error:
$$error_k = \sum_{i=1}^{\mathsf{N}} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Rewriting error:

Reconstruction error and

error_k =
$$\sum_{i=1}^{N} \sum_{j=k+1}^{d} [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^i - \overline{\mathbf{x}})(\mathbf{x}^i - \overline{\mathbf{x}})^T$$

Minimizing reconstruction error and eigen vectors

Minimizing reconstruction error equivalent to picking orthonormal basis_d $(\mathbf{u}_1, ..., \mathbf{u}_d)$ minimizing:

$$error_k = N \sum_{j=k+1}^{d} \mathbf{u}_j^T \mathbf{\Sigma} \mathbf{u}_j$$

• Eigen vector:

- Minimizing reconstruction error equivalent to picking (\mathbf{u}_{k+1} , ..., ud) to be eigen vectors with smallest eigen values

Basic PCA algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 □ X_c ← X − X
- Compute covariance matrix:
 - $\square \quad \Sigma \leftarrow 1/N \ \mathbf{X_c}^{\mathsf{T}} \ \mathbf{X_c}$
- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

©Carlos Gue**89**in 2005-2013

Eigenfaces reconstruction

Each image corresponds to adding 8 principal components:

©Carlos Gue**40**in 2005-2013

Scaling up

- Covariance matrix can be really big!
 - \square Σ is d by d
 - □ Say, only 10000 features
 - ☐ finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - □ finds to k eigenvectors
 - □ great implementations available, e.g., R or Matlab svd

©Carlos Gued#in 2005-201

- Write X = W S V^T
 - □ **X** ← data matrix, one row per datapoint
 - \square **W** \leftarrow weight matrix, one row per datapoint coordinate of \mathbf{x}^i in eigenspace
 - □ **S** ← singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - - in our setting each row is eigenvector vi

©Carlos Gue**46**in 2005-2013

PCA using SVD algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 - $\square X_c \leftarrow X \overline{X}$
- Call SVD algorithm on X_c ask for k singular vectors
- **Principal components:** k singular vectors with highest singular values (rows of **V**^T)
 - □ Coefficients become:

©Carlos Gue**sti**in 2005-2013

What you need to know

- Dimensionality reduction
 - □ why and when it's important
- Simple feature selection
- Principal component analysis
 - □ minimizing reconstruction error
 - □ relationship to covariance matrix and eigenvectors
 - □ using SVD

©Carlos Gue**40**in 2005-2013