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Unsupervised Learning: W 4% ke
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EM: “Reducing” Unsupervised
. gaarning fo Sugervised Leacming

m |f we knew assignment of points to
classes = Supervised Learning!

m Expectation-Maximization (EM)

Guess assignment of points to
classes o Clushn

Recompute model parameters
Iterate

©Carlos Guestrin 2005-2013 4




Back to Unsupervised Learning of
Mixtures of Gaussians — a simple version
= JEE

A simple case:
We have unlabeled data x, x, ... x,
We know there are k classes
We know P(y,) P(y,) P(ys) ... P(y,)
We don’t know py M .. g

We can write P( data | p;.... W)

=p(x1...xm‘ul...uk)

=lﬂ[p(xj“ulm‘uk)
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EM for simple version of Mixtures

B} gf gﬂssians: The E-step

m If we know w,,...,u, — easily compute prob.
point xI belongs to class y=i

2)P(y=i)

i
S
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p(y =l|x nul"ﬂuk) cxexp(— 207
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EM for simple version of Mixtures

. gf gaﬁﬁiﬁni: The M-step

m If we know prob. point xI belongs to class y=i

— MLE for y, is weighted average
imagine k copies of each xi, each with weight P(y=i|xi):

ﬁP(y=i‘x”)x"
T
Se(r=ifv)
J=l

u;

E.M. for Simple version of
Mixtures of Gaussians
" I

E-step

Compute “expected” classes of all datapoints for each class Just evaluate
a Gaussian at
( | . ) ( 1 Z)P( ) X
=1x',u,...u, | <expl— X' =u, =1
p\y Uyl P 207 y

M-step
Compute Max. like g given our data’s class membership distributions

gP(y=i‘x’)x’
Srloeit]

w =




E.M. Convergence
" JE sk

e EMis coordinate

ascent on an e ;\
interesting potential A L1 e N
1]

function e s ot 1 2 « 5
* Coord. ascent for -
bounded pot. func. ! .
convergence to a
local optimum 3L
guaranteed
3

m This algorithm is REALLY USED. And in high dimensional state spaces, too.
E.G. Vector Quantization for Speech Data
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. . o, 0 0
E.M. for axis-aligned GMM | . = o
s_| 00 o

Iterate. On the fth iteration let our estimates be I R T

A= {1y, 0 0, 20, 20 20, p,0, p,0 .. p 0} 0 0 0 o 0

0 00 - 0 o

p¥ is shorthand for

E-step estimate of prior
Compute “expected” classes of all datapoints for each class P(y=i) on tth

iteration

Just evaluate
a Gaussian at
X

Plvmie )l )

M-step
Compute Max. like g given our data’s class membership distributions

EP(y = i‘x",)t,) x’
(1) _ j

oo EP(y=i‘x’,?L,)
] P(y=i‘x’,)t,)

1+1 j
( >=
m
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E.M. for General GMMS pi¥ is shorthand for

estimate of prior
Iterate. On the f'th iteration let our estimates be P(y=i) on t'th iteration

A= {0, 0 0, 0, 30 30 p 0 p0 . 0}

E-step
Compute “expected” classes of all datapoints for each class

Just evaluate
a Gaussian at
X

(1)

P(y=i xf,)L,)OCpi p(x’

M-step
Compute Max. like g given our data’s class membership distributions

EP(y=i‘x’,}Lt)x-f | EP(y=i‘Xj,7t,t) [x" —M,-(HI)][xf _‘ui(m)]r
j y_ 3

(r+1) _ (r+

o .EP(y=i‘x’,)L,) i EP(}’=5‘X'§7H)
7 i

Sefo-is)
m
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After first iteration

After 2nd iteration
= JEE
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 20th iteration
= JEE

Some Bio Assay data
* JE
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GMM clustering of the assay data
" JEE
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Resulting
Density
Estimator
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Three
classes of
assay

(each learned with
it's own mixture
model)

Compou:

" o
Resulting
Bayes

Classifier

nd =
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Compound =
IL-1

" S

none

Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means
anomalous

Cyan means
ambiguous
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E.M.: The General Case

* JEE—
m E.M. widely used beyond mixtures of Gaussians
The recipe is the same...

m Expectation Step: Fill in missing data, given current values of
parameters, 80
If variable y is missing (could be many variables)
Compute, for each data point xi, for each value i of y:
= P(y=i[x,80)

m  Maximization step: Find maximum likelihood parameters for (weighted)
“completed data”:

For each data point x, create k weighted data points

Set 6t as the maximum likelihood parameter estimate for this weighted data

m Repeat

©Carlos Guestrin 2005-2013 26

13



What you should know
" JEE
m K-means for clustering:
algorithm
converges because it's coordinate ascent

m EM for mixture of Gaussians:

How to “learn” maximum likelihood parameters (locally max. like.) in
the case of unlabeled data

Be happy with this kind of probabilistic analysis

Remember, E.M. can get stuck in local minima, and
empirically it DOES

EM is coordinate ascent
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Acknowledgements
" JE——

m K-means & Gaussian mixture models
presentation contains material from excellent
tutorial by Andrew Moore:

http://www.autonlab.org/tutorials/

m K-means Applet:

http://www.elet.polimi.it/upload/matteucc/Clustering/
tutorial html/AppletKM.html

m Gaussian mixture models Applet:

http://www.neurosci.aist.go.jp/%7Eakaho/
MixtureEM.html
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Dimensionality reduction
" JEE
m |nput data may have thousands or millions of
dimensions!
e.g., text data has
m Dimensionality reduction: represent data with
fewer dimensions
easier learning — fewer parameters
visualization — hard to visualize more than 3D or 4D

discover “intrinsic dimensionality” of data
= high dimensional data that is truly lower dimensional

©Carlos Gue8bin 2005-2013
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Lower dimensional projections

m Rather than picking a subset of the features, we
can new features that are combinations of
existing features

m Let’s see this in the unsupervised setting
just X, butno Y

Xz

Linear projection and reconstruction
S

project into
Qo . .
1-dimension
o [¢) Z4
o

X4

reconstruction:
only know z,,
what was (X4,Xy)

©Carlos Gue8in 2005-2013
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Principal component analysis —

. basicidea

m Project n-dimensional data into k-dimensional
space while preserving information:
e.g., project space of 10000 words into 3-dimensions
e.g., project 3-d into 2-d

m Choose projection with minimum reconstruction
error

©Carlos Gue88in 2005-2013

Linear projections, a review
* JEE
m Project a point into a (lower dimensional) space:
point: X = (X4,...,X4)
select a basis — set of basis vectors — (uy,...,u,)

= we consider orthonormal basis:
ueu=1, and ueu;=0 for ix]
select a center — X, defines offset of space
best coordinates in lower dimensional space defined
by dot-products: (z4,...,z,), Z; = (X-X)*u,
= minimum squared error

©Carlos Gue8#tin 2005-2013

17



PCA finds projection that minimizes

. rgggnﬁtrﬁtign error

m Given m data points: x' = (x,},...,x4), i=1...N
m Will represent each point as a projection:

N . .
Y x! and zj= &' -X)-u
m PCA: )

Given k<<d, find (uy,...,u,)
minimizing reconstruction error:

N
errory = (x' — x%)2
i=1

X1
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Understanding the reconstrgction

rror §i=>—c+gz;iuj
] h j=1

z; = (x'—X) - uy

m Note that xi can be represented G .
X . . . . iven k<<d, find (uy,...,u,)
exaCtly by d-d|m§nS|onaI prOJectlon. minimizing reconstruction error:
. _ - . N . .
X=X+ ) Z;'uj errory = »_ (x'— %12
Jj=1 i=1

m Rewriting error:
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Reconstruction error and

. ggvarigngg matrix

N
N d 1 . _ . — T
. > = — g - -
errory, = E Z [uj (Xt — x)]2 N z’:l(x x)(x X)
=1 j=k+1
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Minimizing reconstruction error and

B} giggn vectors

m Minimizing reconstruction error equivalent to picking
orthonormal basis (uy,...,uy) minimizing:
d

errorp = N ujTZuj

. j=k+1
m Eigenvector: “~F

m Minimizing reconstruction error equivalent to picking (u,.,
...,Uy) to be eigen vectors with smallest eigen values

©Carlos Gue88in 2005-2013
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Basic PCA algoritm

* JE—

Start from m by n data matrix X

Recenter: subtract mean from each row of X
X, < X=X

Compute covariance matrix:
S« 1IN X.T X,

Find eigen vectors and values of =

Principal components: k eigen vectors with
highest eigen values
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PCA example
" S

k
Si = i
X' =X+ E Zju,;
Jj=1
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PCA example — reconstruction
* JEEE

k
=%+ Z z;-uj only used first principal component
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Eigenfaces [turk, Pentland '91]

N
m |[nput images: m Principal components:

88333 Eo@L"
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Eigenfaces reconstruction
" JEE
m Each image corresponds to adding 8 principal
components:

©Carlos Gued@in 2005-2013

Scaling up
"
m Covariance matrix can be really big!
Zisdbyd
Say, only 10000 features
finding eigenvectors is very slow...

m Use singular value decomposition (SVD)

finds to k eigenvectors
great implementations available, e.g., R or Matlab svd

©Carlos Guedtin 2005-2013
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SVD

* JEE—
m Write X=WSVT
X < data matrix, one row per datapoint
W < weight matrix, one row per datapoint — coordinate of x' in eigenspace
S < singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue A
VT < singular vector matrix
= in our setting each row is eigenvector v,

©Carlos Guedfin 2005-2013

PCA using SVD algoritm
* JEE——
Start from m by n data matrix X
Recenter: subtract mean from each row of X
X, < X=X
Call SVD algorithm on X, — ask for k singular vectors

Principal components: k singular vectors with highest
singular values (rows of VT)

Coefficients become:

©Carlos Gued8in 2005-2013
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What you need to know
* JE
m Dimensionality reduction
why and when it's important
m Simple feature selection
m Principal component analysis
minimizing reconstruction error

relationship to covariance matrix and eigenvectors
using SVD

©Carlos Guedffin 2005-2013
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