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Supervised Learning of Mixtures 
of Gaussians 

n  Mixtures of Gaussians: 
¨  Prior class probabilities:  P(y) 
¨  Likelihood function per class:  P(x|y=i) 

n  Suppose, for each data point, we know location x and class y 
¨  Learning is easy…  J 

¨  For prior P(y) 

¨  For likelihood function: 
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Unsupervised Learning: 
not as hard as it looks 

 
Sometimes easy 

 
Sometimes impossible 

 
and sometimes in between 

IN CASE YOU’RE 
WONDERING WHAT 
THESE DIAGRAMS 
ARE, THEY SHOW 2-d 
UNLABELED DATA (X 
VECTORS) 
DISTRIBUTED IN 2-d 
SPACE. THE TOP ONE 
HAS THREE VERY 
CLEAR GAUSSIAN 
CENTERS 
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EM: “Reducing” Unsupervised 
Learning to Supervised Learning  

n  If we knew assignment of points to 
classes è Supervised Learning! 

n  Expectation-Maximization (EM) 
¨ Guess assignment of points to 

classes 
¨ Recompute model parameters 
¨  Iterate  
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Back to Unsupervised Learning of 
Mixtures of Gaussians – a simple version 

A simple case: 
 We have unlabeled data x1 x2 … xm 
 We know there are k classes 
 We know P(y1) P(y2) P(y3) … P(yk) 
 We don’t know µ1 µ2 .. µk         

 
We can write P( data | µ1…. µk)  

= p x1...xm µ1...µk( )

= p x j µ1...µk( )
j=1

m

∏

= p x j µi( )P y = i( )
i=1

k
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∏
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EM for simple version of Mixtures 
of Gaussians: The E-step 

n  If we know µ1,…,µk      →  easily compute prob.  
     point xj belongs to class y=i 

 
p y = i x j ,µ1...µk( )∝ exp −

1
2σ 2 x j −µi
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EM for simple version of Mixtures 
of Gaussians: The M-step 

n  If we know prob. point xj belongs to class y=i  
     → MLE for µi is weighted average 

¨  imagine k copies of each xj, each with weight P(y=i|xj): 

µi  =  
P y = i x j( )

j=1

m

∑ x j

P y = i x j( )
j=1

m

∑
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E.M. for Simple version of 
Mixtures of Gaussians  

 
 
 
 

E-step 
 Compute “expected” classes of all datapoints for each class 

M-step 
 Compute Max. like µ given our data’s class membership distributions 

Just evaluate 
a Gaussian at 
xj 

p y = i x j ,µ1...µk( )∝ exp −
1
2σ 2 x j −µi

2#
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'
(P y = i( )

µi  =  
P y = i x j( )

j=1

m

∑ x j

P y = i x j( )
j=1

m

∑
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E.M. Convergence 

n  This algorithm is REALLY USED.  And in high dimensional state spaces, too.  
E.G. Vector Quantization for Speech Data 

•  EM is coordinate 
ascent on an 
interesting potential 
function 

•  Coord. ascent for 
bounded pot. func. ! 
convergence to a 
local optimum 
guaranteed 
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E.M. for axis-aligned GMMs 
Iterate.  On the t’th iteration let our estimates be 

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) } 

 
E-step 

 Compute “expected” classes of all datapoints for each class 

P y = i x j ,λt( )∝ pi
(t )p x j µi

(t ),Σi
(t )( )

pi
(t) is shorthand for 

estimate of P(y=i) 
on t’th iteration 

M-step   
 Compute Max. like µ given our data’s class membership distributions 

µi
t+1( ) =

P y = i x j ,λt( )
j
∑  x j

P y = i x j ,λt( )
j
∑

pi
(t+1) =

P y = i x j ,λt( )
j
∑

m
m = #records 

Just evaluate 
a Gaussian at 
xj 

Σ =

σ 2
1 0 0  0 0

0 σ 2
2 0  0 0

0 0 σ 2
3  0 0

     
0 0 0  σ 2

m−1 0

0 0 0  0 σ 2
m
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pi
(t) is shorthand for 

estimate of prior 
P(y=i) on t’th 
iteration 
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E.M. for General GMMs 
Iterate.  On the t’th iteration let our estimates be 

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) } 

 
E-step 

 Compute “expected” classes of all datapoints for each class 

P y = i x j ,λt( )∝ pi
(t )p x j µi

(t ),Σi
(t )( )

pi
(t) is shorthand for 

estimate of prior 
P(y=i) on t’th iteration 

M-step   
 Compute Max. like µ given our data’s class membership distributions 

µi
t+1( ) =

P y = i x j ,λt( )
j
∑  x j

P y = i x j ,λt( )
j
∑

Σi
t+1( ) =

P y = i x j ,λt( )
j
∑  x j −µi

t+1( )$
%

&
' x

j −µi
t+1( )$

%
&
'
T

P y = i x j ,λt( )
j
∑  

pi
(t+1) =

P y = i x j ,λt( )
j
∑

m
m = #records 

Just evaluate 
a Gaussian at 
xj 
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Gaussian Mixture Example: Start 
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After first iteration 

©Carlos Guestrin 2005-2013 

14 

After 2nd iteration 
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After 3rd iteration 
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After 4th iteration 
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After 5th iteration 
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After 6th iteration 
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After 20th iteration 
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Some Bio Assay data 
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GMM clustering of the assay data 
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Resulting 
Density 
Estimator 
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Three 
classes of 
assay 
(each learned with 
it’s own mixture 
model) 
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Resulting 
Bayes 
Classifier 
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Resulting Bayes 
Classifier, using 
posterior 
probabilities to 
alert about 
ambiguity and 
anomalousness 

Yellow means 
anomalous 

Cyan means 
ambiguous 
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E.M.: The General Case 
n  E.M. widely used beyond mixtures of Gaussians 

¨  The recipe is the same… 

n  Expectation Step:  Fill in missing data, given current values of 
parameters, θ(t) 
¨  If variable y is missing (could be many variables) 
¨  Compute, for each data point xj, for each value i of y: 

n  P(y=i|xj,θ(t)) 

n  Maximization step:  Find maximum likelihood parameters for (weighted) 
“completed data”: 
¨  For each data point xj, create k weighted data points 

n    

¨  Set θ(t+1) as the maximum likelihood parameter estimate for this weighted data 

n  Repeat 
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What you should know 

n  K-means for clustering: 
¨  algorithm 
¨  converges because it’s coordinate ascent 

n  EM for mixture of Gaussians: 
¨  How to “learn” maximum likelihood parameters (locally max. like.) in 

the case of unlabeled data 

n  Be happy with this kind of probabilistic analysis 
n  Remember, E.M. can get stuck in local minima, and 

empirically it DOES 
n  EM is coordinate ascent 
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Acknowledgements 

n  K-means & Gaussian mixture models 
presentation contains material from excellent 
tutorial by Andrew Moore: 
¨ http://www.autonlab.org/tutorials/ 

n  K-means Applet: 
¨ http://www.elet.polimi.it/upload/matteucc/Clustering/

tutorial_html/AppletKM.html 
n  Gaussian mixture models Applet: 

¨ http://www.neurosci.aist.go.jp/%7Eakaho/
MixtureEM.html 
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Dimensionality reduction 

n  Input data may have thousands or millions of 
dimensions! 
¨ e.g., text data has  

n  Dimensionality reduction: represent data with 
fewer dimensions 
¨ easier learning – fewer parameters 
¨ visualization – hard to visualize more than 3D or 4D 
¨ discover “intrinsic dimensionality” of data 

n  high dimensional data that is truly lower dimensional  
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Lower dimensional projections 

n  Rather than picking a subset of the features, we 
can new features that are combinations of 
existing features 

n  Let’s see this in the unsupervised setting  
¨  just X, but no Y 
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Linear projection and reconstruction 

x1 

x2 

project into 
1-dimension z1 

reconstruction: 
only know z1,  

     what was (x1,x2) 
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