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(One) bad case for k-means 

n  Clusters may overlap 
n  Some clusters may be 

“wider” than others 
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Gaussians in m Dimensions 
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P(x) = 1
(2π )m/2 || Σ ||1/2

exp − 1
2
x−µ( )T Σ−1 x−µ( )
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Suppose You Have a Gaussian For 
Each Class 
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P(x | y = i)∝ 1
(2π )m/2 || Σi ||

1/2 exp −
1
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x−µi( )T Σi

−1 x−µi( )
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Gaussian Bayes Classifier 
n  You have a Gaussian over x for each class y=i: 

n  But you need probability of class y=i given x: 

n  Thank you Bayes Rule!! 
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P(x | y = i)∝ 1
(2π )m/2 || Σi ||

1/2 exp −
1
2
x−µi( )T Σi

−1 x−µi( )
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P(y = i | x) = p(x | y = i)P(y = i)
p(x)
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Predicting wealth from age 
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Predicting wealth from age 
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Learning modelyear , 
mpg  ---> maker Σ =

σ 2
1 σ12  σ1m

σ12 σ 2
2  σ 2m
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General: O(m2) 
parameters Σ =

σ 2
1 σ12  σ1m

σ12 σ 2
2  σ 2m
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σ1m σ 2m  σ 2

m

"

#

$
$
$
$
$

%

&

'
'
'
'
'

©Carlos Guestrin 2005-2013 

10 

Aligned: O(m) 
parameters Σ =

σ 2
1 0 0  0 0

0 σ 2
2 0  0 0

0 0 σ 2
3  0 0

     
0 0 0  σ 2

m−1 0

0 0 0  0 σ 2
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Aligned: O(m) 
parameters Σ =

σ 2
1 0 0  0 0

0 σ 2
2 0  0 0

0 0 σ 2
3  0 0

     
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Spherical: O(1) 
cov parameters Σ =

σ 2 0 0  0 0
0 σ 2 0  0 0
0 0 σ 2  0 0
     
0 0 0  σ 2 0
0 0 0  0 σ 2
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Spherical: O(1) 
cov parameters Σ =

σ 2 0 0  0 0
0 σ 2 0  0 0
0 0 σ 2  0 0
     
0 0 0  σ 2 0
0 0 0  0 σ 2
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Next…   back to Density Estimation 
 
What if we want to do density estimation with 
multimodal or clumpy data? 
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But we don’t see class labels!!! 

n  MLE: 
¨ argmax ∏j P(yj,xj) 

n  But we don’t know yj!!! 
n  Maximize marginal likelihood: 

¨ argmax ∏j P(xj) = argmax ∏j ∑i=1
k P(yj=i,xj) 
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Special case: spherical Gaussians 
and hard assignments 

n  If P(X|Y=i) is spherical, with same σ for all classes: 

n  If each xj belongs to one class C(j) (hard assignment), marginal likelihood: 

n  Same as K-means!!! 

P(x j | y = i)∝ exp − 1
2σ 2 x

j −µi

2#

$%
&

'(

P(x j , y = i)
i=1

k

∑
j=1

m

∏ ∝ exp − 1
2σ 2 x

j −µC( j )

2%

&'
(

)*j=1
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P(y = i | x j )∝ 1
(2π )m/2 || Σi ||

1/2 exp −
1
2
x j −µi( )

T
Σi
−1 x j −µi( )$
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'
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P(y = i)

©Carlos Guestrin 2005-2013 



9 

17 

The GMM assumption 

•  There are k components 

•  Component i has an associated 
mean vector µι	



µ1	



µ2	



µ3	
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The GMM assumption 

•  There are k components 

•  Component i has an associated 
mean vector µι	



•  Each component generates data 
from a Gaussian with mean mi and 
covariance matrix σ2Ι  	



Each data point is generated 
according to the following recipe:  

µ1	



µ2	



µ3	
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The GMM assumption 
•   There are k components 

•   Component i has an associated 
mean vector µι	



•   Each component generates 
data from a Gaussian with 
mean mi and covariance matrix 
σ2Ι  	



Each data point is generated 
according to the following 
recipe:  

1.  Pick a component at random: 
Choose component i with 
probability P(y=i) 

µ2	
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The GMM assumption 
 

•    There are k components 

•   Component i has an associated 
mean vector µι	



•   Each component generates 
data from a Gaussian with 
mean mi and covariance matrix 
σ2Ι  	



Each data point is generated 
according to the following 
recipe:  

1.  Pick a component at random: 
Choose component i with 
probability P(y=i) 

2.  Datapoint ∼ Ν(µι, σ2Ι )	



µ2	



x 
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The General GMM assumption 

µ1	



µ2	



µ3	



•  There are k components 

•   Component i has an associated 
mean vector mi 

•   Each component generates 
data from a Gaussian with 
mean mi and covariance matrix 
Σi 

Each data point is generated 
according to the following 
recipe:  

1.  Pick a component at random: 
Choose component i with 
probability P(y=i) 

2.  Datapoint ~ N(mi, Σi ) 
©Carlos Guestrin 2005-2013 
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Supervised Learning of Mixtures 
of Gaussians 

n  Mixtures of Gaussians: 
¨  Prior class probabilities:  P(y) 
¨  Likelihood function per class:  P(x|y=i) 

n  Suppose, for each data point, we know location x and class y 
¨  Learning is easy…  J 

¨  For prior P(y) 

¨  For likelihood function: 

©Carlos Guestrin 2005-2013 23 

24 

Unsupervised Learning: 
not as hard as it looks 

 
Sometimes easy 

 
Sometimes impossible 

 
and sometimes in between 

IN CASE YOU’RE 
WONDERING WHAT 
THESE DIAGRAMS 
ARE, THEY SHOW 2-d 
UNLABELED DATA (X 
VECTORS) 
DISTRIBUTED IN 2-d 
SPACE. THE TOP ONE 
HAS THREE VERY 
CLEAR GAUSSIAN 
CENTERS 
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EM: “Reducing” Unsupervised 
Learning to Supervised Learning  

n  If we knew assignment of points to 
classes è Supervised Learning! 

n  Expectation-Maximization (EM) 
¨ Guess assignment of points to 

classes 
¨ Recompute model parameters 
¨  Iterate  
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The E.M. Algorithm 

n  We’ll get back to unsupervised learning soon 
n  But now we’ll look at an even simpler case with hidden 

information 
n  The EM algorithm 

q  Can do trivial things, such as the contents of the next few slides 
q  An excellent way of doing our unsupervised learning problem, as 

we’ll see 
q  Many, many other uses… 

DETOUR 
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Silly Example 
Let events be “grades in a class” 

 w1 = Gets an A   P(A) = ½ 
 w2 = Gets a   B   P(B) = µ 
 w3 = Gets a   C   P(C) = 2µ 
 w4 = Gets a   D   P(D) = ½-3µ 
    (Note  0 ≤ µ ≤1/6) 

Assume we want to estimate µ from data.  In a given class there were 
    a   A’s 
    b   B’s 
    c   C’s 
    d   D’s 

 
What’s the maximum likelihood estimate of µ given a,b,c,d ? 

©Carlos Guestrin 2005-2013 
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Trivial Statistics 
P(A) = ½    P(B) = µ    P(C) = 2µ    P(D) = ½-3µ 
P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d 
log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ) 

€ 

FOR MAX LIKE µ,  SET ∂LogP
∂µ

= 0

∂LogP
∂µ

=
b
µ

+
2c
2µ

−
3d

1/2 − 3µ
= 0

Gives max like µ =  b + c
6 b + c + d( )

So if class got

Max like µ =
1

10

A B C D 

14 6 9 10 

Boring, but true! 
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Same Problem with Hidden Information 

Someone tells us that 
Number of High grades (A’s + B’s) = h 
Number of C’s                              = c 
Number of D’s                              = d 

What is the max. like estimate of µ now? 

We can answer this question circularly: 

€ 

µ  =  b+ c
6 b+ c + d( )

MAXIMIZATION 

If we know the expected values of a and b 
we could compute the maximum likelihood 
value of µ 

REMEMBER 

P(A) = ½ 

P(B) = µ 

P(C) = 2µ 

P(D) = ½-3µ 

€ 

a =
1

2
1

2 + µ
h        b =

µ
1

2 + µ
h

EXPECTATION If we know the value of µ we could compute the 
expected value of a and b 

Since the ratio a:b should be the same as the ratio ½ : µ	
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E.M. for our Trivial Problem 

We begin with a guess for µ 
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates 
of  µ and a and b. 
 
Define    µ(t)  the estimate of µ on the t’th iteration 
               b(t)  the estimate of b on t’th iteration 
 

REMEMBER 

P(A) = ½ 

P(B) = µ 

P(C) = 2µ 

P(D) = ½-3µ 

€ 

µ(0) =  initial guess

b(t ) =   µ(t )h
1

2 + µ( t )
= Ε b | µ( t )[ ]

µ(t+1) =
b(t ) + c

6 b(t ) + c + d( )
=  max like est. of µ given b( t )

E-step 

M-step 

Continue iterating until converged. 
Good news:  Converging to local optimum is assured. 
Bad news:  I said “local” optimum. ©Carlos Guestrin 2005-2013 
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E.M. Convergence 
n  Convergence proof based on fact that Prob(data | µ) must increase or remain 

same between each iteration [NOT OBVIOUS] 

n  But it can never exceed 1    [OBVIOUS] 
So it must therefore converge   [OBVIOUS] 

t µ(t) b(t) 

0 0 0 

1 0.0833 2.857 

2 0.0937 3.158 

3 0.0947 3.185 

4 0.0948 3.187 

5 0.0948 3.187 

6 0.0948 3.187 

In our example, 
suppose we had 

 h = 20 
 c = 10 
 d = 10 

         µ(0) = 0 

Convergence is generally linear: error 
decreases by a constant factor each time 
step. 
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Back to Unsupervised Learning of 
Mixtures of Gaussians – a simple version 

A simple case: 
 We have unlabeled data x1 x2 … xm 
 We know there are k classes 
 We know P(y1) P(y2) P(y3) … P(yk) 
 We don’t know µ1 µ2 .. µk         

 
We can write P( data | µ1…. µk)  

€ 

= p x1...xm µ1...µk( )

= p x j µ1...µk( )
j=1

m

∏

= p x j µi( )P y = i( )
i=1

k

∑
j=1

m

∏

∝  exp −
1

2σ 2 x j −µi
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ P y = i( )

i=1

k

∑
j=1

m

∏
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EM for simple version of Mixtures 
of Gaussians: The E-step 

n  If we know µ1,…,µk      →  easily compute prob.  
     point xj belongs to class y=i 

 

€ 

p y = i x j ,µ1...µk( )∝exp − 1
2σ 2 x j −µi

2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ P y = i( )
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EM for simple version of Mixtures 
of Gaussians: The M-step 

n  If we know prob. point xj belongs to class y=i  
     → MLE for µi is weighted average 

¨  imagine k copies of each xj, each with weight P(y=i|xj): 

€ 

µi =  
P y = i x j( )

j=1

m

∑ x j

P y = i x j( )
j=1

m

∑
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E.M. for Simple version of 
Mixtures of Gaussians  

 
 
 
 

E-step 
 Compute “expected” classes of all datapoints for each class 

M-step 
 Compute Max. like µ given our data’s class membership distributions 

Just evaluate 
a Gaussian at 
xj 

€ 

p y = i x j ,µ1...µk( )∝exp − 1
2σ 2 x j −µi

2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ P y = i( )

€ 

µi =  
P y = i x j( )

j=1

m

∑ x j

P y = i x j( )
j=1

m

∑
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E.M. Convergence 

n  This algorithm is REALLY USED.  And in high dimensional state spaces, too.  
E.G. Vector Quantization for Speech Data 

•  EM is coordinate 
ascent on an 
interesting potential 
function 

•  Coord. ascent for 
bounded pot. func. ! 
convergence to a 
local optimum 
guaranteed 
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