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Second level of tree
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(Similar recursion in the
other cases)

m Classifying a test
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Learning decision trees is hard!!!
" JEE
m Learning the simplest (smallest) decision tree is
an NP-complete problem [Hyafil & Rivest '76]
m Resort to a greedy heuristic: @
Start from empty decision tree
Split on next best aftribui attribute (feature)
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Entropy
"
Entropy H(Y) of a random variable Y
k

H(Y)=-3) P =y;)logz P(Y = y;)
i=1

N—

- -~ —_—

- A
More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed
- to encode a randomly drawn value of ¥ (under most eff|C|ent code)
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m Information gain is difference IG(X)=H(Y) - H(Y | X)
XG_({J: 0-¢§ '% ~ o3
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Learning decision trees  , ;

" JEE i/ ?mcd' Gompron €lass
m Start from empty decision tree |

m Split on next best attribute (feature)

Use, for example, information gain to select attribute
Split on argmax IG(X;) = argmax H(Y) — H(Y | X;)
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Information gains using the training set (40 records)
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mpg values: bad good
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Information gains using the training set (2 records)
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Base Cases
= JEE

Base Case One: If all records in current data subset have the same
output then don’t recurse

Base Case Two: If all records have exactly the same set of input
attributes then don’t recurse
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Base Cases: An idea
= JEEE

Base Case One: If all records in current data subset have the same
output then don’t recurse

Base Case Two: If all records have exactly the same set of input
attributes then don’t recurse

Proposed Base Case 3:

If all attributes have zero informatioR
gain then don’t recurse

*/s this a good idea?
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If we omit Base Case 3:
= JEEE
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Basic Decision Tree Building

. Simmarized

BuildTree(DataSet, Output)

m If all output values are the same in DataSet, return a leaf node that says
“predict this unique output”

If all input values are the same, return a leaf node that says “predict the
majority output”
Else find attribute X with highest Info Gain
Suppose X has ny distinct values (i.e. X has arity ny).
Create and return a non-leaf node with n, children.
The i'th child should be built by calling
BuildTree(DS;,Output)

Where DS;built consists of all those records in DataSet for which X = ith
distinct value of X.

©Carlos Guestrin 2005-2013 21
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mpg values: bad good
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Decision trees & Learning Bias
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Decision trees will overfit

m Standard decision trees }(éhave no learning bias
Training set error is always zero!
m (If there is no label noise)
Lots of variance

Will definitely overfit!!!
Must bias towards simpler trees

m Many strategies for picking simpler trees:
Fixed depth : [,  or
Fixed number of leaves

Or sorrmtfﬂm\/w__

\
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A chi-square test

—

mpg values: bad good

maker america 0 10 [N M H( mpg | maker = america ) = 0
asia 2 5 I I H( mpg | maker = asia ) = 0.863121
europe 2 2 [N I H( mpg | maker = europe ) = 1
H(mpg) = 0.702467 H(mpg|maker) = 0.478183 )
IG(mpg|maker) € 0.224284 tee,, [ :‘(‘\

i’\[’ §6in
7

m Suppose that MPG was completely uncorrelated with maker.

m What is the chance we’'d have seen data of at least this apparent
level of association anyway?

©Carlos Guestrin 2005-2013 27

A chi-square test

mpg values: bad good

maker america 0 10 [N I H( mpg | maker = america ) = 0
asia 2 5 I I H( mpg | maker = asia ) = 0.863121
europe 2 2 [ I H( mpg | maker = europe ) = 1
H(mpg) = 0.702467 H(mpg|maker) = 0.478183
IG(mpg|maker) = 0.224284

m  Suppose that mpg was completely uncorrelated with maker.

m  What is the chance we’d have seen data of at least this apparent level of
association anyway?

By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute, unfortunately,
not enough time to cover in the lecture, but see readings...)
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Using Chi-squared to avoid overfitting
= JEE
m Build the full decision tree as before

m But when you can grow it no more, start to
prune:

Beginning at the bottom of the tree, delete splits in

which pgance > MaxPchance

Continue working you way up until there are no more
prunable nodes (o Un li Aeion

«C
MaxPchance is a@you must specify to the decision tree,
indicating your willingness to risk fitting noise

©Carlos Guestrin 2005-2013 29

Pruning example
* JEE—
m With MaxPchance = 0.1, you will see the
following MPG decision tree:

mpg values: bad good

root

22 18

pchance@ Note the improved
\ test set accuracy

cylinders = 3 | cylinders = 4 | cylinders = 5 | cylinders = 6 | cylinders = 8 Compared Wlth the
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MaxPchance
= JEEE

m Technical note MaxPchance is a regularization parameter that helps us
bias towards simpler models

)]

2

— | W 1]

85 e -

SHIT| BN

:é $ ‘ | ' #’U
. ncreasing

o Decreasing 1. pchance —mm—m———y

High Bims High Variance
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Real-Valued inputs
" JEE

m What should we do if some of the inputs are real-valued?

mpg cylinders displacemen horsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia
bad 6 199 90 2648 15 70 america
bad 4 121 110 2600 12.8 77 europe
bad 8 350 175 4100 13 73 america
bad 6 198 95 3102 16.5 74 america
bad 4 108, 94 2379 16.5. 73 asia
bad 4 113 95 2228 14 71 asia
bad 8 302 139 3570 12.8 78 america
good 4 120 79 2625 18.6 82 america
bad 8 455 225 4425 10 70 america
good 4 107 86 2464 15.5 76 europe
bad 5 131 103 2830 15.9 78 europe

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

©Carlos Guestrin 2005-2013 32
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“One branch for each numeric

.
” .
|

mpg values: bad good

Hopeless: with such high branching factor will shatter
the dataset and overfit

Threshold splits
" JEE
m Binary tree, split on attribute X
One branch: X <t

Other branch: X 2 t

©Carlos Guestrin 2005-2013 34
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Choosing threshold split
* JEE
m Binary tree, split on attribute X

One branch: X <t
Other branch: X > t

m Search through possible values of t
Seems hard!!!

m But only finite number of f's are important
Sort data according to X into {x;,...,X,}
Consider split points of the form x; + (x4 — x;)/2

©Carlos Guestrin 2005-2013 35

A better idea: thresholded splits
" JEE

m Suppose X is real valued

m Define IG(Y|X:t) as H(Y) - H(Y|X:t)

m Define H(Y|X:t) =
HYIX <t) P(X < t) + HYIX >=t) P(X >= 1)

= /G(Y]|X:t) is the information gain for predicting Y if all you
know is whether X is greater than or less than t

Then define IG*(Y|X) = max, IG(Y|X:t)

For each real-valued attribute, use /IG*(Y|X) for
assessing its suitability as a split

Note, may split on an attribute multiple times,
with different thresholds

©Carlos Guestrin 2005-2013 36
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mpg values:
Input

cylinders

displacement

haorsepower

weight

acceleration

modelyear

maker

Information gains using the training set (40 records)

bad good

Value Distribution Info Gain
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>=18.2 [

<81 [ 0319193
>=81 [

america [N 0.0437265
asia [N

europe [N

Example with MPG
e

©Carlos Guestrin 2005-2013 37

Example tree using reals
* JE

mpg values: bhad good

root
22 18
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What you need to know about

. ﬁﬁﬁiiiﬂn {rees

m Decision trees are one of the most popular data mining tools
Easy to understand oo forast: " MRy of HCisanFay
Easy to implement S ex@w'o) Popule  Viey yedal

Easy to use
Computationally cheap (to solve heuristically)
m Information gain to select attributes (ID3, C4.5,...)
m Presented for classification, can be used for regression and
density estimation too
m Decision trees will overfit!!!
Zero bias classifier ! Lots of variance
Must use tricks to find “simple trees”, e.g.,
» Fixed depth/Early stopping

= Pruning
= Hypothesis testing
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Fighting the bias-variance tradeoff
" S

m Simple (a.k.a. weak) learners are good
e.g., naive Bayes, logistic regression,'decision stumps
(or shallow decision trees)
Low variance, don’t usually overfit too badly
m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???
No!!!
But often yes...
\/_
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Voting (Ensemble Methods)
" JEE

= Instead of learning a single (weak) classifier, learn many weak classifiers that are
ood at different parts of the input space
9 rent p g Rk Y- ]}
m  Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction 1 d ¢ i S 5""».*‘.

Classifiers will be most “sure” about a particular part of the space ol uak
On average, do better than smgle classmer'/"' gl

- Cien (¥ ¢ [asstfe,
WX = 8 (42, O(L*)Z/ Lo oF ke

= But how do you ???
force classifiers to learn about different parts of the input space?
weigh the votes of different classifiers? 0({
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Boosting [Schaplre 1989]
f LK N"I"hl’
- haid A4 (4]
m |dea: given a weak learner, run it multiple times or{reweighted
training data, then let learned classifiers vote

‘\-(:“\ { I,“'n ) Y‘ l,"“ '31\&“' 50 2 Coveed d’-ﬁ&"s(‘l‘h“

m On iteration t: to) 1\ (L)<0 <) u.(om(:" sk e,
weight¥ach training example by how |ncorrectly it was classified§s f.
rn a hypothesis — h, & CAS on d: fﬁ(qﬂ- D ia chnase -w.r?\-]\

A strength for this hypothesis — o ks o He 55“"".
m Final classifier: T
) = (T 4 ht)
Ll

m Practically useful
(] Thsoretically interesting
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6}
Learning from weighted data D
" JEE

m Sometimes not all data points are equal
Some data points are more equal than others
i i 4 hiredk nofhined
m Consider a weighted dataset ¢ hirte\ T
D(j) — weight of jth training example (xi,yﬁ')
Interpretations:
= jth training example counts as D(j) examples

= —_ ) ) ﬁj \uu,
= If | were to “resample” data, | would get more samples of “heavier” data points
———
—_—

m Now, in all calculations, whenever used, jth training example counts as

« TR
tA,I?(“j')‘,{)exa.anplbe\s ¥ \«4-?1\1..( (e s

Qj 7 \ R N s
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