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Fighting the bias-variance tradeoff 

n  Simple (a.k.a. weak) learners are good 
¨ e.g., naïve Bayes, logistic regression, decision stumps 

(or shallow decision trees) 
¨ Low variance, don’t usually overfit too badly 

n  Simple (a.k.a. weak) learners are bad 
¨ High bias, can’t solve hard learning problems 

n  Can we make weak learners always good??? 
¨ No!!! 
¨ But often yes… 
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Voting  (Ensemble Methods) 
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are 

good at different parts of the input space 
n  Output class: (Weighted) vote of each classifier 

¨  Classifiers that are most “sure” will vote with more conviction 
¨  Classifiers will be most “sure” about a particular part of the space 
¨  On average, do better than single classifier! 

n  But how do you ???  
¨  force classifiers to learn about different parts of the input space? 
¨  weigh the votes of different classifiers? 
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Boosting 
n  Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let learned classifiers vote 

n  On each iteration t:  
¨  weight each training example by how incorrectly it was classified 
¨  Learn a hypothesis – ht 
¨  A strength for this hypothesis – αt  

n  Final classifier: 

n  Practically useful 
n  Theoretically interesting 

[Schapire, 1989] 
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Learning from weighted data 
n  Sometimes not all data points are equal 

¨  Some data points are more equal than others 
n  Consider a weighted dataset 

¨  D(j) – weight of j th training example (xj,yj) 
¨  Interpretations: 

n  j th training example counts as D(j) examples 
n  If I were to “resample” data, I would get more samples of “heavier” data points 

n  Now, in all calculations, whenever used, j th training example counts as 
D(j) “examples” 
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AdaBoost 
n  Initialize weights to uniform dist: D1(j) = 1/N 
n  For t = 1…T 

¨  Train weak learner ht on distribution Dt over the data 
¨  Choose weight αt  

¨  Update weights: 

n  Where Zt is normalizer: 

 
 
n  Output final classifier: 
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Picking Weight of Weak Learner 

n  Weigh ht higher if it did well on training data 
(weighted by Dt): 

¨ Where εt is the weighted training error: 
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
If we minimize ∏t Zt, we minimize our training error 
  
We can tighten this bound greedily, by choosing αt and ht on each 

iteration to minimize Zt. 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 

©Carlos Guestrin 2005-2013 

1

N

NX

j=1

[H(xj
) 6= yj ]  1

N

NX

j=1

exp(�yjf(xj
)) =

TY

t=1

Zt

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))



6 

11 

Why choose αt for hypothesis ht this way? 

We can minimize this bound by choosing αt on each iteration to minimize Zt. 
 
 
 
 
 
For boolean target function, this is accomplished by [Freund & Schapire ’97]:  
 
 
 
 
 
 
You’ll prove this in your homework! J 

[Schapire, 1989] 
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Strong, weak classifiers 

n  If each classifier is (at least slightly) better than random 
¨   εt < 0.5 

n  AdaBoost will achieve zero training error (exponentially fast): 

n  Is it hard to achieve better than random training error? 
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Boosting results – Digit recognition 

n  Boosting often 
¨ Robust to overfitting 
¨ Test set error decreases even after training error is zero 

[Schapire, 1989] 
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Boosting: Experimental Results 

Comparison of C4.5, Boosting C4.5, Boosting decision 
stumps (depth 1 trees), 27 benchmark datasets 

[Freund & Schapire, 1996] 
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Boosting and Logistic Regression 

Logistic regression assumes: 
 
 
And tries to maximize data likelihood: 
 
 
 
Equivalent to minimizing log loss 
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Boosting and Logistic Regression 

Logistic regression equivalent to minimizing log loss 

Boosting minimizes similar loss function!! 

Both smooth approximations of 0/1 loss! 
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Logistic regression and Boosting 

Logistic regression: 
n  Minimize loss fn 

n  Define  

    
 where features xi are 
predefined 

 
n  Weights wi are learned in 

joint optimization 
 
 
 

Boosting: 
n  Minimize loss fn 

n  Define  

   where ht(x) defined 
dynamically to fit data 
 (not a linear classifier) 

 
n  Weights αt learned 

incrementally 
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What you need to know about Boosting 

n  Combine weak classifiers to obtain very strong classifier 
¨  Weak classifier – slightly better than random on training data 
¨  Resulting very strong classifier – can eventually provide zero training error 

n  AdaBoost algorithm 
n  Boosting v. Logistic Regression  

¨  Similar loss functions 
¨  Single optimization (LR) v. Incrementally improving classification (B) 

n  Most popular application of Boosting: 
¨  Boosted decision stumps! 
¨  Very simple to implement, very effective classifier 
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Boosting generalization error bound 

n  T – number of boosting rounds 
n  d – VC dimension of weak learner, measures complexity of classifier  
n  N – number of training examples 

[Freund & Schapire, 1996] 
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Boosting generalization error bound 

n  T – number of boosting rounds 
n  d – VC dimension of weak learner, measures complexity of classifier  
n  N – number of training examples 

[Freund & Schapire, 1996] 

n  Contradicts: Boosting often 
¨ Robust to overfitting 
¨ Test set error decreases even after training error is zero 

n  Need better analysis tools 
¨ we’ll come back to this later in the semester 
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Why not just use Linear Regression? 
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Using data to predict new data 
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Nearest neighbor 

©Carlos Guestrin 2005-2013 26 

Univariate 1-Nearest Neighbor 

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(xi) for some 
unknown function f. 
Given query point xq, your job is to predict  
Nearest Neighbor: 
1.   Find the closest xi in our set of datapoints 

ŷ ≈ f x q( )

j nn( ) =
j

argmin x j − x q

ŷ = yi nn( )2.  Predict 
 Here’s a 
dataset with 
one input, one 
output and four 
datapoints. 
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1-Nearest Neighbor is an example of…. 
 Instance-based learning 

Four things make a memory based learner: 
n  A distance metric 
n  How many nearby neighbors to look at? 
n  A weighting function (optional) 
n  How to fit with the local points? 

x1                 y1 

x2                 y2 

x3                 y3 

. 

. 
xn                yn 

A function approximator 
that has been around 
since about 1910. 

To make a prediction, 
search database for 
similar datapoints, and fit 
with the local points. 
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1-Nearest Neighbor 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?    

 One 
3.  A weighting function (optional)     

 Unused 

4.  How to fit with the local points?     
 Just predict the same output as the nearest neighbor. 
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Multivariate 1-NN examples 

Regression Classification 
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Multivariate distance metrics 
Suppose the input vectors x1, x2, …xN are two dimensional: 
x1 = ( x1

1 , x1
2 ) , x2 = ( x2

1 , x2
2 ) , …xN = ( xN

1 , xN
2 ). 

One can draw the nearest-neighbor regions in input space. 

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2 

The relative scalings in the distance metric affect region shapes 

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2 
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Euclidean distance metric 

Other Metrics… 
n  Mahalanobis, Rank-based, Correlation-based,…  
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Or equivalently, 
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Notable distance metrics  
(and their level sets) 

L1 norm (absolute) 

L1 (max) norm 

Scaled Euclidian (L2) 

Mahalanobis          (here, 
Σ on the previous slide is not 
necessarily diagonal, but is 
symmetric 
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Consistency of 1-NN 

n  Consider an estimator fn trained on n examples 
¨  e.g., 1-NN, neural nets, regression,... 

n  Estimator is consistent if true error goes to zero as 
amount of data increases 
¨  e.g., for no noise data, consistent if: 

n  Regression is not consistent! 
¨  Representation bias 

n  1-NN is consistent (under some mild fineprint)  

What about variance??? 
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1-NN overfits? 
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k-Nearest Neighbor 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?      

  k 
1.  A weighting function (optional)     

 Unused 

2.  How to fit with the local points?       
 Just predict the average output among the k nearest neighbors. 
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k-Nearest Neighbor (here k=9) 

K-nearest neighbor for function fitting smoothes away noise, but there are 
clear deficiencies. 
What can we do about all the discontinuities that k-NN gives us? 
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Weighted k-NNs 

n  Neighbors are not all the same 
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Kernel regression 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?    

 All of them 
3.  A weighting function (optional)     

 πi = exp(-D(xi, query)2 / ρ2)     
Nearby points to the query are weighted strongly, far points 

weakly. The ρ parameter is the Kernel Width. Very 
important. 

4.  How to fit with the local points?     
 Predict the weighted average of the outputs:   
 predict = Σπiyi / Σπi 
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Weighting functions 

πi = exp(-D(xi, query)2 / ρ2)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Typically optimize ρ using 
gradient descent 

(Our examples use Gaussian) 
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Kernel regression predictions 

Increasing the kernel width ρ means further away points get an 
opportunity to influence you. 
As ρà∞, the prediction tends to the global average. 

ρ=10 
 

ρ=20 
 

ρ=80 
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Kernel regression on our test cases 

ρ=1/32 of x-axis width. ρ=1/32 of x-axis width. ρ=1/16 axis width. 

Choosing a good ρ is important. Not just for Kernel Regression, but for 
all the locally weighted learners we’re about to see. 
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Kernel regression can look bad 

ρ = Best. ρ = Best. ρ = Best. 

Time to try something more powerful… 
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Locally weighted regression 

Kernel regression: 
 Take a very very conservative function approximator 
called AVERAGING. Locally weight it. 

Locally weighted regression: 
 Take a conservative function approximator called 
LINEAR REGRESSION. Locally weight it. 
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Locally weighted regression 

n  Four things make a memory based learner: 
n  A distance metric       

 Any 
n  How many nearby neighbors to look at?     

  All of them 
n  A weighting function (optional)     

 Kernels 
¨  πi = exp(-D(xi, query)2 / ρ2)     

n  How to fit with the local points?   
 General weighted regression:     

ŵq =
w

argmin π q
k y k −wTx k( )

k=1

N

∑
2
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How LWR works 

Query 

Linear regression 
§  Same parameters for  
   all queries 

Locally weighted regression 
§  Solve weighted linear regression 
   for each query 

ŵ = XTX( )
−1
XTY

Π =

π1 0 0 0
0 π 2 0 0
0 0  0
0 0 0 π n

"

#

$
$
$
$
$

%

&

'
'
'
'
'

wq = ΠX( )TΠX( )
−1
ΠX( )TΠY
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Another view of LWR 

Image from  Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145. 
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LWR on our test cases 

ρ = 1/16 of x-axis width. ρ = 1/32 of x-axis width. ρ = 1/8 of x-axis width. 
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Locally weighted polynomial regression 

Kernel Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/100 x-axis 

LW Linear Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/40 x-axis 

LW Quadratic Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/15 x-axis 

Local quadratic regression is easy: just add quadratic terms to the X 
matrix. As the regression degree increases, the kernel width can 
increase without introducing bias. 
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Curse of dimensionality for 
instance-based learning 

n  Must store and retreve all data! 
¨  Most real work done during testing 
¨  For every test sample, must search through all dataset – very slow! 
¨  There are (sometimes) fast methods for dealing with large datasets 

n  Instance-based learning often poor with noisy or irrelevant 
features 
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Curse of the irrelevant feature 
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What you need to know about 
instance-based learning 

n  k-NN 
¨  Simplest learning algorithm 
¨  With sufficient data, very hard to beat “strawman” approach 
¨  Picking k? 

n  Kernel regression 
¨  Set k to n (number of data points) and optimize weights by gradient 

descent 
¨  Smoother than k-NN 

n  Locally weighted regression 
¨  Generalizes kernel regression, not just local average 

n  Curse of dimensionality 
¨  Must remember (very large) dataset for prediction 
¨  Irrelevant features often killers for instance-based approaches 
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