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Fighting the bias-variance tradeoff
" S

m Simple (a.k.a. weak) learners are good
e.g., naive Bayes, logistic regression,'decision stumps
(or shallow decision trees)
Low variance, don’t usually overfit too badly
m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???
No!!!
But often yes...
\/_
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Voting (Ensemble Methods)
" JEE

= Instead of learning a single (weak) classifier, learn many weak classifiers that are
ood at different parts of the input space
g I- P input space kl)(,)Y{[_\_I;
m  Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction 1 d ¢ i S 5""».*‘.

Classifiers will be most “sure” about a particular part of the space ol W‘(
On average, do better than smgle classmer'/"' gl

e (¥ ¢ [asstfe
KO - Sign (421 dL")Z/ Lo oF ke

= But how do you ???
force classifiers to learn about different parts of the input space?
weigh the votes of different classifiers? 0({
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Boostmg [Schapire 1989]
T‘ LK N"I"hl,
= L 4- [
m |dea: given a weak learner, run it multiple tlmes orY(reweighted
training data then let learned classifiers vote

held) {1, +1 {-1,¢) l()l\xj’ V0 D Comg kg
m On |terat|on t9)1\ (L)<0 .') .,.comc’- (i ek,
weight¥ach training example by how incorrectly it was classified8s f.-
A trna ;:/?otrt\smsh —hthé S on d: fﬁ(qﬂ- -) 11 case w:‘?\-’x
strength for this hypothesis — o pnets o e ’r""'

m Final classifier:

B,
() =597 (2 4 Ata)

m Practically useful
(] Thsoretically interesting
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Learning from weighted data [_"*
" JEE
m Sometimes not all data points are equal
Some data points are more equal than others
m Consider a weighted dataset ((}‘ it nofhiced
D(j) — weight of jth training example (xi,yﬁ')
Interpretations:

= jth training example counts as D(j) examples w Lo
— — . . .
= If | were to “resample” data, | would get more samples of “heavier” data points
———

_—

m Now, in all calculations, whenever used, jth training example counts as

« TR
tA,I?(“j')‘,{)exa.anplbe\s ¥ \«,u?l\l..( (e 2

%ﬁ 7 \ e “‘””* ;o
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AdaBoost

" JEE
m [nitialize weights to uniform dist: D,(j) = 1/N
m Fort=1...T

Train weak learner h, on distribution D, over the data
Choose weight a,

Update weights: " Du(j) exp(—asyi hy(2))
Dia(3) = 7,

= Where Z, is normalizer: , ,
Z Dy (j) exp(—auy’ hy(z7))

m Output final classifier:
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Picking Weight of Weak Learner
" JEE
m Weigh h, higher if it did well on training data
(weighted by D,):

11 1—€t
oy = —In
¢ 2 €¢

Where ¢, is the weighted training error:

ZDt htIB] #y]
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Why choose ¢ for hypothesis #, this way?

[Schapire, 1989]

Training error of final classifier is bounded by:
Nzﬂ (27) #y7] < —ZeXp y f(27))
7j=1

Where  f(z) = Zatht(w) H(z) = sign(f(z))
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
* JEE

Training error of final classifier is bounded by: ZDt exp(—azy’hi(2’)

—Z]l LU] %y <—Zexp yf:cj HZt

Where  f(z) = Zatht(:c) H(m)—szgn(f(w))

©Carlos Guestrin 2005-2013 9

Why choose ¢ for hypothesis #, this way?

[Schapire, 1989]
" JEE

Training error of final classifier is bounded by:

NZ H(z7) # 1] <—Zexp v f(x?)) HZt

Where  f(z) = Zatht(w) H(w) = sign(f())

If we minimize []; Z,, we minimize our training error

We can tighten this bound greedily, by choosing ¢; and #, on each
iteration to minimize Z,

Z Dy (5) exp(—ayy? hy(27))
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
" JEE

We can minimize this bound by choosing ¢; on each iteration to minimize Z,

Zy = Z Dy (j) exp(—auy’ hy(z7))

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1—6t
e (1)

You'll prove this in your homework! ©
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Strong, weak classifiers
" JEE
m If each classifier is (at least slightly) better than random

€ <0.5

m AdaBoost will achieve zero training error (exponentially fast):

m Is it hard to achieve better than random training error?
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Boosting results — Digit recognition

[Schapire, 1989]

20-
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# rounds

m Boosting often
Robust to overfitting
Test set error decreases even after training error is zero
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Boosting: Experimental Results
[Freund & Schapire, 1996]
" JEE

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

N W
o o
.
L)
]

N
(=]

—_
(=]
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[ ]
«*

(=2

L)
® g . . . . .
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AdaBoost and AdaBoost. MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
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Boosting and Logistic Regression

Logistic regression assumes:
1

14 exp(f(=))

And tries to maximize data likelihood:
N

P(DIH)=]]

Jj=1

P(Y =1|X) =

1
1+ exp(—y¢/ f(a7))

Equivalent to minimizing log loss

N
> In(1+ exp(—y’ f(27)))

J=1
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Boosting and Logistic Regression
=

Logistic regression equivalent to minimizing log loss
N
> In(1+ exp(—y’ f(27)))
j=1

Boosting minimizes similar loss function!!
1 N _ A T
> ey 1) = [] 2
j=1 t=1

Both smooth approximations of 0/1 loss!

©Carlos Guestrin 2005-2013

Logistic regression and Boosting

Logistic regression: Boosting:
m Minimize loss fn m Minimize loss fn
N N
> (1 + exp(—y’ f(a7))) > exp(—y’ f(27))
Jj=1 j=1
m Define ] Defir(1e) 5 ()
flx) = athi(x
f(i’):wo—FZwiﬂCi t
i where /,(x) defined
where features x, are dynamically to fit data
predefined (not a linear classifier)

m Weights w; are learned in  m Weights o, learned
joint optimization incrementally
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What you need to know about Boosting
" S

m Combine weak classifiers to obtain very strong classifier
Weak classifier — slightly better than random on training data
Resulting very strong classifier — can eventually provide zero training error
m AdaBoost algorithm
m Boosting v. Logistic Regression
Similar loss functions
Single optimization (LR) v. Incrementally improving classification (B)
m  Most popular application of Boosting:
Boosted decision stumps!
Very simple to implement, very effective classifier
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Boosting generalization error bound
- [Freund & Schapire, 1996]
JE—

erroryue(H) < errortmy;,L(H)—k@( T—]\?)

m T — number of boosting rounds
m d - VC dimension of weak learner, measures complexity of classifier
m N — number of training examples
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Boosting generalization error bound
7 [Freund & Schapire, 1996]
S

~ Td
erroryye(H) < eTTOTtT'(I,ivz,(H)+O< W)

m Contradicts: Boosting often
Robust to overfitting
Test set error decreases even after training error is zero

m Need better analysis tools
we’ll come back to this later in the semester

m T — number of boosting rounds
m d - VC dimension of weak learner, measures complexity of classifier
m N — number of training examples
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Instance-based

Learning

Nearest Neighbors/Non-
Parametric Methods

Machine Learning — CSE446
Carlos Guestrin
University of Washington

April 24, 2013
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Why not just use Linear Regression?
" SN

applying facode L90:8N:9 to file ki.mbl applying facode L90:8N:8 to file jl.mbl
o iving fasste LROIENTS 1o file siabl v viscosity
sttributel 600 KL.eb1-L90:E:. 0 $1.9b1-190: 30,
) a1
o . P e .
[ v 00 '7
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2
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O 2 3 E o W “200 o 20 an o 0 1. [E3 [ T
attriuten = siarate
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Using data to predict new data
" JEE—
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Nearest neighbor
" JEE

Zpplying faccde 201:8N:9 to file kl.nmbl
¥

500 k1.mbl-201:8N:9.
400
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0
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X
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Univariate 1-Nearest Neighbor
" I

Given datapoints (x7,y7) (x2,y?)..(xN,yN),where we assume y’=f(x) for some
unknown function f.

Given query point x9, your job is to predict )A; =~ f(x")

Nearest Neighbor:

1. Find the closest x; in our set of datapoints

j(nn)=argmin|x’ - '
J

2. Predict y=y™ . 2@
edict y=y &8 S —e
Here's a N oo

(

dataset with

one input, one oo hiss
output and four datapoint

datapoints.
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1-Nearest Neighbor is an example of....

Instance-based learning
" JEE

A function approximator

-~ N
that has been around N— _—
since about 1910. X; —>y;

- X —Yy
To make a prediction, x3 y3
search database for
similar datapoints, and fit
with the local points. XN y"
N— A

Four things make a memory based learner:
n A distance metric

[ How many nearby neighbors to look at?
n A weighting function (optional)

L] How to fit with the local points?

©Carlos Guestrin 2005-2013 27

1-Nearest Neighbor
* JEE

Four things make a memory based learner:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
One

3. A weighting function (optional)
Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.

©Carlos Guestrin 2005-2013 28
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Multivariate 1-NN examples

Classification Regression

©Carlos Guestrin 2005-2013
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Multivariate distance metrics

Suppose the input vectors x*, x2, ...xN are two dimensional:
X'= (X", x7,), x2= (X2, x%) , .. xN=(xN;, xNy).
One can draw the nearest-neighbor regions in input space.

Dist(x/,x/) = (X'; — X/ ;)2 + (X, — X)2  Dist(x/,x) =(xi, — xI,)2+(3x/, — 3%,)

The relative scalings in the distance metric affect region shapes

©Carlos Guestrin 2005-2013

30

15



Euclidean distance metric
= JEE

D " — .2 _ '. 2
Or equivalently, (6x7) \/Z 7 (xl xl)

D(X,X')=\/(X—X')TE(X—X')

where
2o o
=] 02 0O
[0 0 o]

Other Metrics...
m Mahalanobis, Rank-based, Correlation-based,...
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Notable distance metrics
(and their level sets)
S —-_—

Scaled Euclidian (L,)

L, norm (absolute)

Mahalanobis (here,

= on the previous slide is not

necessarily diagonal, but is

symmetric L1 (max) norm
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Consistency of 1-NN
" JEE

e.g., 1-NN, neural nets, regression,...

e.g., for no noise data, consistent if:

lim MSE(f,) =0

n—aoo

Regression is not consistent!
Representation bias
1-NN is consistent (under some mild fineprint)

Consider an estimator £, trained on n examples

Estimator is consistent if true error goes to zero as
amount of data increases

What about variance???

©Carlos Guestrin 2005-2013
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1-NN overfits?

viscosity

Spplying facods ani:ei: ey

©Carlos Guestrin 2005-2013
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k-Nearest Neighbor
"

Four things make a memory based learner:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
k

1. A weighting function (optional)
Unused

2. How fo fit with the local points?
Just predict the average output among the k nearest neighbo

©Carlos Guestrin 2005-2013

rs.
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k-Nearest Neighbor (here k=9)

sssssss
¥ attribate

K-nearest neighbor for function fitting smoothes away noise, but there are
clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

©Carlos Guestrin 2005-2013
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Weighted k-NNs
S

m Neighbors are not all the same

©Carlos Guestrin 2005-2013 37

1.

Kernel regression
S

Four things make a memory based learner:

A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?

All of them

3. A weighting function (optional)

m = exp(-D(x, query)? / p?)
Nearby points to the query are weighted strongly, far points
weakly. The p parameter is the Kernel Width. Very
important.

4. How to fit with the local points?

Predict the weighted average of the outputs:
predict =Xy / Zm

©Carlos Guestrin 2005-2013 38
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Weighting functions

1/d 1/d»2 1/({d+1)
' = exp(-D(x', query)? / p?) 10 10 .

6 6 0.6 \\

4 4 0.4

2 2 0.2

0 o 2 0 o 2 0 0 2
d --> d --> d -->

exp(-d * d) exp(|-dl) Uniform

1 1 1 1

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0 o 2 0 o 2 0 0 2
d --> d --> d -->

1-d (1 - de2)»2 (1 - da3)»3

1 1 1

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0 o 2 0 o 2 0 0 2
d --> d --> d -->

Typically optimize p using (Our examples use Gaussian)
gradient descent
©Carlos Guestrin 2005-2013 39

Kernel regression predictions

_ e g e e
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Increasing the kernel width p means further away points get an
opportunity to influence you.

As p—>, the prediction tends to the global average.
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Kernel regression on our test cases

“ JE
o b A
/ ) .o
/ s -
o / .
RPN . o~ //
P / /
I e 2 L e
p=1/32 of x-axis width. p=1/32 of x-axis width.

p=1/16 axis width.

Choosing a good p is important. Not just for Kernel Regression, but for
all the locally weighted learners we’re about to see.

4

Kernel regression can look bad

J ‘\
S /[ : E
- i /'/: : .
p= Best. L;) = Best. / Ep = Best

Time to try something more powerful...

©Carlos Guestrin 2005-2013
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Locally weighted regression
" S

Kernel regression:
Take a very very conservative function approximator
called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called
LINEAR REGRESSION. Locally weight it.

©Carlos Guestrin 2005-2013
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Locally weighted regression
" JEE

[ Four things make a memory based learner:
n A distance metric

Any

n How many nearby neighbors to look at?
All of them

[ A weighting function (optional)
Kernels

m = exp(-D(x', query)? / p?)
m  How to fit with the local points?
General weighted regression:

2
W= argminﬁ%‘ (v -w'x')
w k=1

©Carlos Guestrin 2005-2013
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How LWR works

! "

Query
==
Linear regression Locally weighted regression
= Same parameters for » Solve weighted linear regression
all queries for each query
A -1 -1
w=(X"X) XY w' = (X)X (1x)" 1y
0 0 0
ool 0 ™ .0 0
0 0 . 0
0 0 0 ux,

Another view of LWR

kernel too wide - includes nonlinear region
kernel just right )
kernel too narrow - excludes some of linear region

Image from Cohn, D.A., Gt i, Z., and Jo

Learning with Statistical Models", JAIR Volume 4, pages ##9-145.




2pplying facode LAD:EN:9 to fila L.xbl

LWR on our test cases

2pplying facode L21:8N:9 to fils kl.xbl

app1ying faceds L51:aN:3 to file al.mbl
viscosity v attributel
50 stopipaoinio.f | 600 ISR SITCER N P al.nbl-L51 0.
12
10
00
s
6
200 J <
a /
1.2 % am 0 200 400 500) o 2 4 6 8 10
attributed

p = 1/16 of x-axis width.

p = 1/32 of x-axis width.
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p = 1/8 of x-axis width.

a7

Locally weighted polynomial regression
" JEE—
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Kernel Regression
Kernel width p at optimal
level.

p = 1/100 x-axis

LW Linear Regression
Kernel width p at optimal
level.

p = 1/40 x-axis

LW Quadratic Regression
Kernel width p at optimal
level.

p = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the X
matrix. As the regression degree increases, the kernel width can
increase without introducing bias.

©Carlos Guestrin 2005-2013

48

24



Curse of dimensionality for

. i”ﬁtﬁnﬁﬁ'ﬁﬁﬁﬁﬂ learning

m Must store and retreve all data!
Most real work done during testing
For every test sample, must search through all dataset — very slow!
There are (sometimes) fast methods for dealing with large datasets
m Instance-based learning often poor with noisy or irrelevant
features
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Curse of the irrelevant feature
= JEEE
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What you need to know about

. initangg-gaigg Iﬁarning

m k-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach
Picking k?

m Kernel regression

Set k to n (number of data points) and optimize weights by gradient
descent

Smoother than k-NN

m Locally weighted regression
Generalizes kernel regression, not just local average
m Curse of dimensionality
Must remember (very large) dataset for prediction
Irrelevant features often killers for instance-based approaches
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= JEEE
m This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:
http://www.cs.cmu.edu/~awm/tutorials
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