
1

1

Boosting

Machine Learning – CSE446
Carlos Guestrin
University of Washington

April 24, 2013
©Carlos Guestrin 2005-2013

2

Fighting the bias-variance tradeoff

n  Simple (a.k.a. weak) learners are good
¨ e.g., naïve Bayes, logistic regression, decision stumps

(or shallow decision trees)
¨ Low variance, don’t usually overfit too badly

n  Simple (a.k.a. weak) learners are bad
¨ High bias, can’t solve hard learning problems

n  Can we make weak learners always good???
¨ No!!!
¨ But often yes…

©Carlos Guestrin 2005-2013

2

3

Voting (Ensemble Methods)
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are

good at different parts of the input space
n  Output class: (Weighted) vote of each classifier

¨  Classifiers that are most “sure” will vote with more conviction
¨  Classifiers will be most “sure” about a particular part of the space
¨  On average, do better than single classifier!

n  But how do you ???
¨  force classifiers to learn about different parts of the input space?
¨  weigh the votes of different classifiers?

©Carlos Guestrin 2005-2013

4

Boosting
n  Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

n  On each iteration t:
¨  weight each training example by how incorrectly it was classified
¨  Learn a hypothesis – ht
¨  A strength for this hypothesis – αt

n  Final classifier:

n  Practically useful
n  Theoretically interesting

[Schapire, 1989]

©Carlos Guestrin 2005-2013

3

5

Learning from weighted data
n  Sometimes not all data points are equal

¨  Some data points are more equal than others
n  Consider a weighted dataset

¨  D(j) – weight of j th training example (xj,yj)
¨  Interpretations:

n  j th training example counts as D(j) examples
n  If I were to “resample” data, I would get more samples of “heavier” data points

n  Now, in all calculations, whenever used, j th training example counts as
D(j) “examples”

©Carlos Guestrin 2005-2013

AdaBoost
n  Initialize weights to uniform dist: D1(j) = 1/N
n  For t = 1…T

¨  Train weak learner ht on distribution Dt over the data
¨  Choose weight αt

¨  Update weights:

n  Where Zt is normalizer:

n  Output final classifier:

©Carlos Guestrin 2005-2013 6

Dt+1(j) =
Dt(j) exp(�↵ty

j
ht(x

j
))

Zt

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

4

Picking Weight of Weak Learner

n  Weigh ht higher if it did well on training data
(weighted by Dt):

¨ Where εt is the weighted training error:

©Carlos Guestrin 2005-2013 7

↵t =
1

2
ln

✓
1� ✏t
✏t

◆

✏t =
NX

j=1

Dt(j) [ht(x
j) 6= y

j]

8

Training error of final classifier is bounded by:

Where

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Carlos Guestrin 2005-2013

1

N

NX

j=1

[H(xj
) 6= yj] 1

N

NX

j=1

exp(�yjf(xj
))

5

9

Training error of final classifier is bounded by:

Where

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Carlos Guestrin 2005-2013

1

N

NX

j=1

[H(xj
) 6= yj] 1

N

NX

j=1

exp(�yjf(xj
)) =

TY

t=1

Zt

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

10

Training error of final classifier is bounded by:

Where

If we minimize ∏t Zt, we minimize our training error

We can tighten this bound greedily, by choosing αt and ht on each

iteration to minimize Zt.

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Carlos Guestrin 2005-2013

1

N

NX

j=1

[H(xj
) 6= yj] 1

N

NX

j=1

exp(�yjf(xj
)) =

TY

t=1

Zt

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

6

11

Why choose αt for hypothesis ht this way?

We can minimize this bound by choosing αt on each iteration to minimize Zt.

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

You’ll prove this in your homework! J

[Schapire, 1989]

©Carlos Guestrin 2005-2013

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

12

Strong, weak classifiers

n  If each classifier is (at least slightly) better than random
¨  εt < 0.5

n  AdaBoost will achieve zero training error (exponentially fast):

n  Is it hard to achieve better than random training error?

©Carlos Guestrin 2005-2013

1

N

NX

j=1

[H(xj
) 6= yj]

TY

t=1

Zt exp

�2

TX

t=1

(1/2� ✏t)
2

!

7

13

Boosting results – Digit recognition

n  Boosting often
¨ Robust to overfitting
¨ Test set error decreases even after training error is zero

[Schapire, 1989]

©Carlos Guestrin 2005-2013

14

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]

error error

er
ro

r

©Carlos Guestrin 2005-2013

8

15 ©Carlos Guestrin 2005-2013

16

Boosting and Logistic Regression

Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

©Carlos Guestrin 2005-2013

P (D|H) =

NY

j=1

1

1 + exp(�yjf(xj
))

NX

j=1

ln(1 + exp(�y

j
f(x

j
)))

9

17

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

Boosting minimizes similar loss function!!

Both smooth approximations of 0/1 loss!

©Carlos Guestrin 2005-2013

NX

j=1

ln(1 + exp(�y

j
f(x

j
)))

1

N

NX

j=1

exp(�y

j
f(x

j
)) =

TY

t=1

Zt

18

Logistic regression and Boosting

Logistic regression:
n  Minimize loss fn

n  Define

 where features xi are
predefined

n  Weights wi are learned in

joint optimization

Boosting:
n  Minimize loss fn

n  Define

 where ht(x) defined
dynamically to fit data
 (not a linear classifier)

n  Weights αt learned

incrementally
©Carlos Guestrin 2005-2013

NX

j=1

ln(1 + exp(�y

j
f(x

j
)))

NX

j=1

exp(�y

j
f(x

j
))

f(x) = w0 +
X

i

wixi

10

19

What you need to know about Boosting

n  Combine weak classifiers to obtain very strong classifier
¨  Weak classifier – slightly better than random on training data
¨  Resulting very strong classifier – can eventually provide zero training error

n  AdaBoost algorithm
n  Boosting v. Logistic Regression

¨  Similar loss functions
¨  Single optimization (LR) v. Incrementally improving classification (B)

n  Most popular application of Boosting:
¨  Boosted decision stumps!
¨  Very simple to implement, very effective classifier

©Carlos Guestrin 2005-2013

20

Boosting generalization error bound

n  T – number of boosting rounds
n  d – VC dimension of weak learner, measures complexity of classifier
n  N – number of training examples

[Freund & Schapire, 1996]

©Carlos Guestrin 2005-2013

N

11

21

Boosting generalization error bound

n  T – number of boosting rounds
n  d – VC dimension of weak learner, measures complexity of classifier
n  N – number of training examples

[Freund & Schapire, 1996]

n  Contradicts: Boosting often
¨ Robust to overfitting
¨ Test set error decreases even after training error is zero

n  Need better analysis tools
¨ we’ll come back to this later in the semester

©Carlos Guestrin 2005-2013

N

22

Instance-based
Learning
Nearest Neighbors/Non-
Parametric Methods
Machine Learning – CSE446
Carlos Guestrin
University of Washington

April 24, 2013
©Carlos Guestrin 2005-2013

12

©Carlos Guestrin 2005-2013 23

Why not just use Linear Regression?

©Carlos Guestrin 2005-2013 24

Using data to predict new data

13

©Carlos Guestrin 2005-2013 25

Nearest neighbor

©Carlos Guestrin 2005-2013 26

Univariate 1-Nearest Neighbor

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(xi) for some
unknown function f.
Given query point xq, your job is to predict
Nearest Neighbor:
1. Find the closest xi in our set of datapoints

ŷ ≈ f x q()

j nn() =
j

argmin x j − x q

ŷ = yi nn()2. Predict
 Here’s a
dataset with
one input, one
output and four
datapoints.

x
y

Her
e,

thi
s i

s

the
 cl

os
es

t

da
tap

oin
t

Here, this is
the closest
datapoint

He
re

, t
hi

s
is

th
e

clo
se

st

da
ta

po
in

t

14

©Carlos Guestrin 2005-2013 27

1-Nearest Neighbor is an example of….
 Instance-based learning

Four things make a memory based learner:
n  A distance metric
n  How many nearby neighbors to look at?
n  A weighting function (optional)
n  How to fit with the local points?

x1 y1

x2 y2

x3 y3

.

.
xn yn

A function approximator
that has been around
since about 1910.

To make a prediction,
search database for
similar datapoints, and fit
with the local points.

©Carlos Guestrin 2005-2013 28

1-Nearest Neighbor

Four things make a memory based learner:
1.  A distance metric

 Euclidian (and many more)
2.  How many nearby neighbors to look at?

 One
3.  A weighting function (optional)

 Unused

4.  How to fit with the local points?
 Just predict the same output as the nearest neighbor.

15

©Carlos Guestrin 2005-2013 29

Multivariate 1-NN examples

Regression Classification

©Carlos Guestrin 2005-2013 30

Multivariate distance metrics
Suppose the input vectors x1, x2, …xN are two dimensional:
x1 = (x1

1 , x1
2) , x2 = (x2

1 , x2
2) , …xN = (xN

1 , xN
2).

One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

16

©Carlos Guestrin 2005-2013 31

Euclidean distance metric

Other Metrics…
n  Mahalanobis, Rank-based, Correlation-based,…

()

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∑

=

−=

∑

∑

2
N

2
2

2
1

22

σ00

0σ0
00σ

)x'-(x)x'-(x)x'(x,

')x'(x,

T

i
iii

D

xxD σ

where

Or equivalently,

©Carlos Guestrin 2005-2013 32

Notable distance metrics
(and their level sets)

L1 norm (absolute)

L1 (max) norm

Scaled Euclidian (L2)

Mahalanobis (here,
Σ on the previous slide is not
necessarily diagonal, but is
symmetric

17

©Carlos Guestrin 2005-2013 33

Consistency of 1-NN

n  Consider an estimator fn trained on n examples
¨  e.g., 1-NN, neural nets, regression,...

n  Estimator is consistent if true error goes to zero as
amount of data increases
¨  e.g., for no noise data, consistent if:

n  Regression is not consistent!
¨  Representation bias

n  1-NN is consistent (under some mild fineprint)

What about variance???

©Carlos Guestrin 2005-2013 34

1-NN overfits?

18

©Carlos Guestrin 2005-2013 35

k-Nearest Neighbor

Four things make a memory based learner:
1.  A distance metric

 Euclidian (and many more)
2.  How many nearby neighbors to look at?

 k
1.  A weighting function (optional)

 Unused

2.  How to fit with the local points?
 Just predict the average output among the k nearest neighbors.

©Carlos Guestrin 2005-2013 36

k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but there are
clear deficiencies.
What can we do about all the discontinuities that k-NN gives us?

19

©Carlos Guestrin 2005-2013 37

Weighted k-NNs

n  Neighbors are not all the same

©Carlos Guestrin 2005-2013 38

Kernel regression

Four things make a memory based learner:
1.  A distance metric

 Euclidian (and many more)
2.  How many nearby neighbors to look at?

 All of them
3.  A weighting function (optional)

 πi = exp(-D(xi, query)2 / ρ2)
Nearby points to the query are weighted strongly, far points

weakly. The ρ parameter is the Kernel Width. Very
important.

4.  How to fit with the local points?
 Predict the weighted average of the outputs:
 predict = Σπiyi / Σπi

20

©Carlos Guestrin 2005-2013 39

Weighting functions

πi = exp(-D(xi, query)2 / ρ2)

Typically optimize ρ using
gradient descent

(Our examples use Gaussian)

©Carlos Guestrin 2005-2013 40

Kernel regression predictions

Increasing the kernel width ρ means further away points get an
opportunity to influence you.
As ρà∞, the prediction tends to the global average.

ρ=10

ρ=20

ρ=80

21

©Carlos Guestrin 2005-2013 41

Kernel regression on our test cases

ρ=1/32 of x-axis width. ρ=1/32 of x-axis width. ρ=1/16 axis width.

Choosing a good ρ is important. Not just for Kernel Regression, but for
all the locally weighted learners we’re about to see.

©Carlos Guestrin 2005-2013 42

Kernel regression can look bad

ρ = Best. ρ = Best. ρ = Best.

Time to try something more powerful…

22

©Carlos Guestrin 2005-2013 43

Locally weighted regression

Kernel regression:
 Take a very very conservative function approximator
called AVERAGING. Locally weight it.

Locally weighted regression:
 Take a conservative function approximator called
LINEAR REGRESSION. Locally weight it.

©Carlos Guestrin 2005-2013 44

Locally weighted regression

n  Four things make a memory based learner:
n  A distance metric

 Any
n  How many nearby neighbors to look at?

 All of them
n  A weighting function (optional)

 Kernels
¨  πi = exp(-D(xi, query)2 / ρ2)

n  How to fit with the local points?
 General weighted regression:

ŵq =
w

argmin π q
k y k −wTx k()

k=1

N

∑
2

23

©Carlos Guestrin 2005-2013 45

How LWR works

Query

Linear regression
§  Same parameters for
 all queries

Locally weighted regression
§  Solve weighted linear regression
 for each query

ŵ = XTX()
−1
XTY

Π =

π1 0 0 0
0 π 2 0 0
0 0 0
0 0 0 π n

"

#

$
$
$
$
$

%

&

'
'
'
'
'

wq = ΠX()TΠX()
−1
ΠX()TΠY

©Carlos Guestrin 2005-2013 46

Another view of LWR

Image from Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145.

24

©Carlos Guestrin 2005-2013 47

LWR on our test cases

ρ = 1/16 of x-axis width. ρ = 1/32 of x-axis width. ρ = 1/8 of x-axis width.

©Carlos Guestrin 2005-2013 48

Locally weighted polynomial regression

Kernel Regression
Kernel width ρ at optimal
level.

ρ = 1/100 x-axis

LW Linear Regression
Kernel width ρ at optimal
level.

ρ = 1/40 x-axis

LW Quadratic Regression
Kernel width ρ at optimal
level.

ρ = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the X
matrix. As the regression degree increases, the kernel width can
increase without introducing bias.

25

©Carlos Guestrin 2005-2013 49

Curse of dimensionality for
instance-based learning

n  Must store and retreve all data!
¨  Most real work done during testing
¨  For every test sample, must search through all dataset – very slow!
¨  There are (sometimes) fast methods for dealing with large datasets

n  Instance-based learning often poor with noisy or irrelevant
features

©Carlos Guestrin 2005-2013 50

Curse of the irrelevant feature

26

©Carlos Guestrin 2005-2013 51

What you need to know about
instance-based learning

n  k-NN
¨  Simplest learning algorithm
¨  With sufficient data, very hard to beat “strawman” approach
¨  Picking k?

n  Kernel regression
¨  Set k to n (number of data points) and optimize weights by gradient

descent
¨  Smoother than k-NN

n  Locally weighted regression
¨  Generalizes kernel regression, not just local average

n  Curse of dimensionality
¨  Must remember (very large) dataset for prediction
¨  Irrelevant features often killers for instance-based approaches

©Carlos Guestrin 2005-2013 52

Acknowledgment

n  This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:
¨ http://www.cs.cmu.edu/~awm/tutorials

