Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don’t usually overfit too badly

- Simple (a.k.a. weak) learners are bad
 - High bias, can’t solve hard learning problems

- Can we make weak learners always good???
 - No!!
 - But often yes…
Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn **many weak classifiers** that are good at different parts of the input space.

- **Output class**: (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction.
 - Classifiers will be most “sure” about a particular part of the space.
 - On average, do better than single classifier!

\[H(x) = \text{Sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]

- But how do you ???
 - force classifiers to learn about different parts of the input space?
 - weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote.

- On each iteration:
 - weight each training example by how incorrectly it was classified.
 - Learn a hypothesis – \(h_t \): focus on “difficult” parts of the space.
 - A strength for this hypothesis – \(\alpha_t \).

\[H(x) = \text{Sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]

- Practically useful
- Theoretically interesting
Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others
- Consider a weighted dataset
 - $D(i)$ – weight of ith training example (x_i, y_i)
 - Interpretations:
 - ith training example counts as $D(i)$ examples
 - If I were to “resample” data, I would get more samples of “heavier” data points

- Now, in all calculations, whenever used, ith training example counts as $D(i)$ “examples”

Adaboost

- Initialize weights to uniform dist: $D_1(j) = 1/N$
- For $t = 1 \ldots T$
 - Train weak learner h_t on distribution D_t over the data
 - Choose weight $\alpha_t > 0$ (usually)
 - Update weights:
 $$D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
 - Where Z_t is normalizer:
 $$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y_i h_t(x_i))$$
 - So final weights add up to 1
- Output final classifier:
 $$H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$
Picking Weight of Weak Learner

- Weigh \(h_t \) higher if it did well on training data (weighted by \(D_t \)):

 \[
 \alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
 \]

 Where \(\epsilon_t \) is the weighted training error:

 \[
 \epsilon_t = \sum_{j=1}^{N} D_t(j) I[h_t(x_j) \neq y_j]
 \]

 Magic:

 \(\frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \)

 (e.g. \(\epsilon_t = 1 \) : perfectly wrong)

 \(\epsilon_t = 0 \) : perfectly right

 \(\epsilon_t > 0 \) : imperfect

 \(\epsilon_t < 0 \) : impossible

Why choose \(\alpha_t \) for hypothesis \(h_t \) this way?

[Schapire, 1989]

Training error of final classifier is bounded by:

\[
\frac{1}{N} \sum_{j=1}^{N} \text{I}[H(x_j) \neq y_j] \leq \frac{1}{N} \sum_{j=1}^{N} \exp(-y_j f(x_j))
\]

Where \(f(x) = \sum_t \alpha_t h_t(x) \); \(H(x) = \text{sign}(f(x)) \)
Why choose α_t for hypothesis h_t this way? [Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{N} \sum_{j=1}^{N} \mathbb{I}[H(x_j) \neq y_j] \leq \frac{1}{N} \sum_{j=1}^{N} \exp(-y_j f(x_j)) = \prod_{t=1}^{T} Z_t$$

Where

$$f(x) = \sum_{t} \alpha_t h_t(x); \ H(x) = \text{sign}(f(x))$$

If we minimize $\prod_{t} Z_t$, we minimize our training error.

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t.

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y_j h_t(x_j))$$
Why choose α_t for hypothesis h_t this way?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y_j h_t(x_j))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

You'll prove this in your homework! 😊

Strong, weak classifiers

- If each classifier is (at least slightly) better than random:
 - $\varepsilon_t < 0.5$

- AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{N} \sum_{j=1}^{N} \mathbb{1}[H(x_j) \neq y_j] \leq \prod_{t=1}^{T} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} \frac{1}{2} (1 - \varepsilon_t)^2 \right)$$

- $\varepsilon_t < \frac{1}{2}$ weak classifier must be strictly better than random

- Is it hard to achieve better than random training error?
Boosting results – Digit recognition

Boosting often
- Robust to overfitting
- Test set error decreases even after training error is zero

[Schapire, 1989]

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]
Boosting and Logistic Regression

Logistic regression assumes:
\[f(x) = \mathbf{w}_0 + \sum_{i=1}^{n} \mathbf{w}_i \mathbf{h}_i(x) \]

And tries to maximize data likelihood:

\[
P(D|H) = \prod_{j=1}^{N} \frac{1}{1 + \exp(-y_j f(x_j))} \approx \sum_{i=1}^{n} \ln(1 + \exp(-y_j f(x_j)))
\]

Equivalent to minimizing log loss
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

\[\sum_{j=1}^{N} \ln(1 + \exp(-y_j f(x_j))) \]

Boosting minimizes similar loss function!!

\[\frac{1}{N} \sum_{j=1}^{N} \exp(-y_j f(x_j)) = \prod_{t=1}^{T} Z_t \]

Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:
- Minimize loss function
 \[\sum_{j=1}^{N} \ln(1 + \exp(-y_j f(x_j))) \]
- Define
 \[f(x) = w_0 + \sum_{i} w_i x_i \]
 where features \(x_i \) are predefined
- Weights \(w_i \) are learned in joint optimization

Boosting:
- Minimize loss function
 \[\sum_{j=1}^{N} \exp(-y_j f(x_j)) \]
- Define
 \[f(x) = \alpha_i h_t(x) \]
 where \(h_t(x) \) defined dynamically to fit data
 (not a linear classifier)
 via weak classifier
What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier