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Causal structure 

n  Suppose we know the following: 
¨  The flu causes sinus inflammation 
¨  Allergies cause sinus inflammation 
¨  Sinus inflammation causes a runny nose 
¨  Sinus inflammation causes headaches 

n  How are these connected? 
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Possible queries 

Flu Allergy 

Sinus 

Headache Nose 

n  Inference 

n  Most probable 
explanation 

n  Active data 
collection 
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Car starts BN 

n  18 binary attributes 

n  Inference  
¨  P(BatteryAge|Starts=f) 

n  216 terms, why so fast? 
n  Not impressed? 

¨  HailFinder BN – more than 354 = 
58149737003040059690390169 terms 
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Factored joint distribution - 
Preview 

Flu Allergy 

Sinus 

Headache Nose 
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What about probabilities? 
Conditional probability tables (CPTs) 

Flu Allergy 

Sinus 

Headache Nose 
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Number of parameters 

Flu Allergy 

Sinus 

Headache Nose 
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Key: Independence assumptions 

Flu Allergy 

Sinus 

Headache Nose 

Knowing sinus separates the variables from each other 
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(Marginal) Independence 

n  Flu and Allergy are (marginally) independent 

Flu = t Flu = f 

Allergy = t 

Allergy = f 

Allergy = t 

Allergy = f 

Flu = t 

Flu = f 
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Marginally independent random 
variables 

n  Sets of variables X, Y 
n  X is independent of Y if 

¨ P Ⱶ (X=x⊥Y=y), ∀x∈Val(X), y∈Val(Y) 

n  Shorthand: 
¨ Marginal independence: P Ⱶ (X ⊥ Y) 

n  Proposition: P statisfies (X ⊥ Y) if and only if 
¨ P(X,Y) = P(X) P(Y) 
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Conditional independence 

n  Flu and Headache are not (marginally) independent 

n  Flu and Headache are independent given Sinus 
infection 

n  More Generally: 
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Conditionally independent random 
variables 

n  Sets of variables X, Y, Z 
n  X is independent of Y given Z if 

¨ P Ⱶ (X=x⊥Y=y|Z=z), ∀x∈Val(X), y∈Val(Y), z∈Val(Z) 

n  Shorthand: 
¨ Conditional independence: P Ⱶ (X ⊥ Y | Z) 
¨ For P Ⱶ (X ⊥ Y |∅), write P Ⱶ (X ⊥ Y) 

n  Proposition: P statisfies (X ⊥ Y | Z) if and only if 
¨ P(X,Y|Z) = P(X|Z) P(Y|Z) 
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The independence assumption  

Flu Allergy 

Sinus 

Headache Nose 

Local Markov Assumption: 
A variable X is independent 
of its non-descendants given 
its parents  
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Explaining away 

Flu Allergy 

Sinus 

Headache Nose 

Local Markov Assumption: 
A variable X is independent 
of its non-descendants given 
its parents  
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Naïve Bayes revisited 

Local Markov Assumption: 
A variable X is independent 
of its non-descendants given 
its parents  
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Joint distribution 

Flu Allergy 

Sinus 

Headache Nose 

Why can we decompose? Markov Assumption! 
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The chain rule of probabilities 

n  P(A,B) = P(A)P(B|A) 

n  More generally: 
¨ P(X1,…,Xn) = P(X1) P(X2|X1)  …  P(Xn|X1,…,Xn-1) 

Flu 

Sinus 
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Chain rule & Joint distribution 

Flu Allergy 

Sinus 

Headache Nose 

Local Markov Assumption: 
A variable X is independent 
of its non-descendants given 
its parents  
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The Representation Theorem –  
Joint Distribution to BN 

Joint probability 
distribution: Obtain 

BN: Encodes independence 
assumptions 

If conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 
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Two (trivial) special cases 

Edgeless graph Fully-connected  
graph 
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Review 
n  Bayesian Networks  

¨  Compact representation for 
probability distributions 

¨  Exponential reduction in number of 
parameters 

n  Fast probabilistic inference 
¨  As shown in demo examples  
¨  Compute P(X|e) 

n  Today 
¨  Learn BN structure 

Flu Allergy 

Sinus 

Headache Nose 
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Learning Bayes nets 

x(1) 
… 

 x(m) 

Data 

structure parameters 

CPTs –  
P(Xi| PaXi) 
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Learning the CPTs 

x(1) 
… 

 x(m) 

Data For each discrete variable Xi 
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Information-theoretic interpretation 
of maximum likelihood 1 

n  Given structure, log likelihood of data: 

Flu Allergy 

Sinus 

Headache Nose 
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Information-theoretic interpretation 
of maximum likelihood 2 

n  Given structure, log likelihood of data: 

Flu Allergy 

Sinus 

Headache Nose 
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Information-theoretic interpretation 
of maximum likelihood 3 

n  Given structure, log likelihood of data: 

Flu Allergy 

Sinus 

Headache Nose 
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Decomposable score 

n  Log data likelihood 

n  Decomposable score: 
¨ Decomposes over families in BN (node and its parents) 
¨ Will lead to significant computational efficiency!!! 
¨ Score(G : D) = ∑i FamScore(Xi|PaXi : D) 
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