
CSE446 Machine Learning, Spring 2013: Homework 4

Due: Friday, May 31st, beginning of class

Instructions There are 2 written questions on this assignment, plus a fourth coding question. Submit both
your written answers (as a .txt or a .pdf) and your implementation to the Dropbox at https://catalyst.
uw.edu/collectit/assignment/darylh/26829/108644

1 Manual calculation of one round of EM for a GMM [30 points]

(Extended version of: Murphy Exercise 11.7) In this question we consider clustering 1D data with a mixture
of 2 Guassians using the EM algorithm. You are given the 1-D data points x = [1 10 20].

M step

Suppose the output of the E step is the following matrix:

R =

 1 0
0.4 0.6
0 1


where entry ri,c is the probability of observation xi belonging to cluster c (the responsibility of cluster

c for data point i). You just have to compute the M step. You may state the equations for maximum
likelihood estimates of these quantities (which you should know) without proof; you just have to apply the
equations to this data set. You may leave your answer in fractional form. Show your work.

1. [5 points] Write down the likelihood function you are trying to optimize.
2. [5 points] After performing the M step for the mixing weights π1, π2, what are the new values?
3. [5 points] After performing the M step for the means µ1 and µ2, what are the new values?
4. [5 points] After performing the M step for the standard deviations σ1 and σ2, what are the new values?

E step

Now suppose the output of the M step is the answer to the previous section. You will compute the subsequent
E step.

1. [5 points] Write down the formula for the probability of observation xi belonging to cluster c.
2. [5 points] After performing the E step, what is the new value of R?

2 PCA via Successive Deflation [30 points]

(Adapted from Murphy Exercise 12.7)

Suppose we have a set of n datapoints x1, . . . , xn, where each xi is represented as a d-dimensional column
vector.

Let X = [x1; . . . ;xn] be the (d× n) matrix where column i is equal to xi. Define C = 1
nXXT to be the

covariance matrix of X, where Cij =
∑

n XinXjn = covar(i, j).

1

https://catalyst.uw.edu/collectit/assignment/darylh/26829/108644
https://catalyst.uw.edu/collectit/assignment/darylh/26829/108644


Next, let v1, v2, . . . vk be the first k eigenvectors with larges eigenvalues of C, i.e., the principal basis
vectors. These satisfy

vTj vk =

{
0 if j 6= k

1 if j = k

v1 is the first principal eigenvector of C (the eigenvector with the largest eigenvalue), and as such satisfies
Cv1 = λ1v1. Now define x̃i as the orthogonal projection of xi onto the space orthogonal to v1:

x̃i = (I− v1vT1 )xi

Finally, define X̃ = [x̃1; . . . ; x̃n] as the (d × n) deflated matrix of rank one less than X, which is
obtained by removing from the d-dimensional data the component that lies in the direction of the first
principal eigenvector:

X̃ = (I− v1vT1 )X

1. [10 points] Show that the covariance of the deflated matrix, C̃ = 1
nX̃X̃T is given by

C̃ =
1

n
XXT − λ1v1vT1

(Hint: Some useful facts: (I− v1vT1 ) is symmetric, XXT v1 = nλ1v1, and v
T
1 v1 = 1.

Also, for any matrices A and B, (AB)T = BTAT .
Furthermore, vT1 XXT = nλ1v

T
1 )

2. [10 points] Show that for j 6= 1, if vj is a principal eigenvector of C with corresponding eigenvalue λj
(that is, Cvj = λjvj), then vj is also a principal eigenvector of C̃ with the same eigenvalue λj .

3. [5 points] Let u be the first principal eigenvector of C̃. Explain why u = v2. (You may assume u is
unit norm.)

4. [5 points] Suppose we have a simple method for finding the leading eigenvector and eigenvalue of a
positive-definite matrix, denoted by [λ, u] = f(C). Write some pseudocode for finding the first K
principal basis vectors of X that only uses the special f function and simple vector arithmetic.
(Hint: This should be a simple iterative routine that takes 2-3 lines to write. The input is C,K, and
the function f , the output should be vj and λj for j ∈ [1 : K].)

3 Programming Question (clustering with K-means) [40 points]

In class we discussed the K-means clustering algorithm. Your programming assignment this week is to
implement the K-means algorithm on a different subset of the digit data you worked with last week.

3.1 The Data

There are two files with the data. The first

digitdata.txt

contains the 1000 observations of 157 pixels (a subset of the original 785) concerning handwritten digits.
The second file

digitlabels.txt

contains the true digit label (either 1, 3, 5, or 7 ). You can read both data files in with

data <- read.table("digitdata.txt")

truelabs <- read.table("digitlabels.txt")

2



3.2 The algorithm

Your algorithm should be implemented as follows:

1. Randomly select k starting centers from your data set.
2. Assign each data point to the cluster associated with the nearest of the k center points.
3. Re-calculate the centers as the mean vector of each cluster from (2).
4. Repeat steps (2) and (3) until convergence or iteration limit.

Define convergence as no change in label assignment from one step to another or you have iterated 20 times
(whichever comes first). Since there are 158 features this algorithm may take a couple of minutes to run. As
such I will provide some useful R functions below that may help.

3.3 Within group sum of squares

The goal of clustering can be thought of as minimizing the variation within groups and consequently max-
imizing the variation between groups. A good model has low sum of squares within each group. We define
sum of squares in the traditional way. Let Ck be the kth cluster and let µk be the empirical mean of the
observations xi in cluster Ck. Then the within group sum of squares for cluster Ck is defined as:

SS(k) =
∑
i∈Ck

(xi − µCk
)2

Then if there are K clusters total then the “sum of within group sum of squares” is just the sum of all K of
these individual SS(k) terms.

3.4 Mistake Rate

Given that we know the actual assignment labels for each data point we can attempt to analyze how well the
clustering recovered this. For cluster Ck let its assignment be whatever the majority vote is for that cluster.
For example if for one cluster we had 270 observations labeled one, 50 labeled three, 9 labeled five, and
0 labeled seven then that cluster will be assigned value one and had 50 + 9 + 0 = 59 mistakes for a total
mistake rate of 59/(270 + 59) = 17.93%. If we add up the total number of “mistakes” for each cluster and
divide by the total number of observations (1000) we will get our total mistake rate.

3.5 Questions

When you have implemented the algorithm please submit the following:

1. [20 points] Your solution code.
2. [10 points] A plot of the sum of within group sum of squares versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
3. [10 points] A plot of total mistake rate versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

3.6 Some useful functions

First you may find it useful that functions in R can return lists. If, for example, your function creates several
variables that you wish to return (say within group sum of squares and the labels) you can return:

results <- list(labels = labels, withinss = withinss)

return(results)

Then to access each item we use the $ sign. For example if the function was called “kMeans(...)” we could
do the following

myresults <- kMeans(...)

labels <- myresults$labels

For finding distance you should use the built in

3



dist()

function which returns the euclidean distance between two rows of a matrix. For the minimum distance you
should remember

which.min()

If you have your data stored in a data frame called “data” and you have a function “nearest(x, centers)”
which takes a point x and a matrix “centers” where each row is a center of one cluster and the function
returns which row (center) the point x is closest to, then the following function will return the nearest cluster
for each data point:

assignCenters <- function(data, centers){

labels <- apply(data,1, FUN = nearest, centers)

return(labels)

}

Then if you have a vector called “labels” which says says which cluster (1, . . . ,K) each element of data is
assigned to, then we can define the new centers as follows

newCenters <- function(data, labels){

centers <- aggregate(data, list(label = labels),mean)

centers <- as.matrix(centers[,-1])

return(centers)

}

You may want to use a similar version of “aggregate(...)” with a different function (that you can write
yourself) to calculate the within group sum of squares.

4


	Manual calculation of one round of EM for a GMM [30 points]
	PCA via Successive Deflation [30 points]
	Programming Question (clustering with K-means) [40 points]
	The Data
	The algorithm
	Within group sum of squares
	Mistake Rate
	Questions
	Some useful functions


