
CSE446 Machine Learning, Spring 2013: Homework 3

Due: Friday, May 17th, beginning of class

Instructions There are 3 written questions on this assignment, plus a fourth coding question. Submit both
your written answers (as a .txt or a .pdf) and your implementation to the Dropbox at https://catalyst.
uw.edu/collectit/assignment/darylh/26829/108643

1 Error bound for 1-nearest neighbor classifier [30 points]

A nice result by Cover and Hart (1967) shows that, as the amount of training data approaches infinity, the
error rate of the 1-nearest neighbor classifier is at most twice the Bayes-optimal error rate. In this problem,
you will prove this result for the case of binary classification with real-valued inputs.

Let x1, x2, . . . be the training examples and yj be the corresponding binary class labels, yj ∈ {0, 1}.
You can think of x as points in some fixed d-dimensional Euclidean space.

Let py(x) = p(X = x|Y = y) be the true conditional probability distribution for points in class y. We assume
continuous and non-zero conditional probabilities: 0 < py(x) < 1 for all x and y. Let also θ = p(Y = 1) be
the probability that a random training example is in class 1. Again, assume 0 < θ < 1.

1. (5 Points) Given these expressions calculate the true probability q(x) = p(Y = 1|X = x) that a data
point x belongs to class 1. Express q(x) in terms of p0(x), p1(x), and θ. (Hint: Use Bayes rule.)

2. (5 Points) A Bayes-optimal classifier is a classifier that always assigns a data point x the most probable
class arg maxy P (Y = y|X = x). This means Bayes-optimal classifier is maximizing the probability of
correct classification. Given some test data point x, what is the probability that example x will be
misclassified using the Bayes-optimal classifier, in terms of q(x)? (Hint: Start by splitting the cases
where the true class 1, versus the true class is 0.)

3. (5 Points) Now the 1-nearest neighbor classifier assigns a test data point x the label of the closest
training point x′. Given some test data point x and its nearest neighbor x′, what is the expected error
of the 1-nearest neighbor classifier, i.e., the probability that x will be misclassified, in terms of q(x)
and q(x′)?

4. (5 Points) In the asymptotic case, the number of training examples of each class goes to infinity,
and the training data fills the space in a dense fashion. Then the nearest neighbor x′ of x has q(x′)
converging to q(x). By performing this substitution in the previous expression, give the asymptotic
error for the 1-nearest neighbor classifier at point x, in terms of q(x).

5. (5 Points) Show that the asymptotic error obtained in part 4 is less than twice the Bayes-optimal error
obtained in part 2.

6. (5 Points) Why doesn’t this asymptotic error bound hold in the non-asymptotic case, where the number
of training examples is finite? You may want to draw a picture to illustrate your point here.

1

https://catalyst.uw.edu/collectit/assignment/darylh/26829/108643
https://catalyst.uw.edu/collectit/assignment/darylh/26829/108643

2 Learning Theory [5 Points]

If the Hypothesis space H is finite, you have m i.i.d. samples, and 0 < ε < 1 then for any learned hypothesis
h we have:

P (errortrue(h)− errortrain(h) > ε) ≤ |H|e−2Nε
2

If we fix some desired ε, δ > 0 such that:

P (errortrue(h)− errortrain(h) > ε) ≤ |H|e−2Nε
2

≤ δ

Then with probability at least 1− δ we have:

errortrue(h)− errortrain(h) ≤ ε (1)

But from the first bound:
|H|e−2Nε

2

≤ δ

1. (2 Points) Calculate the minimum required number of samples N in terms of ε and δ such that (1)
holds.

2. (3 Points) Consider using decision trees with fixed depth k then the number of decision trees is bounded
by:

2 · (2n)2
k−1

Calculate the minimum required number of samples N if you wish to use decision trees of depth k = 4
and δ = 0.05 and ε = 0.05 you have n = 10 features.

3 Fitting an SVM classifier by hand [30 Points]

(Source: Murphy text, Exercise 14.1) Consider a dataset with 2 points in 1d: (x1 = 0, y1 = −1) and
(x2 =

√
2, y2 = 1). Consider mapping each point to 3d using the feature vector φ(x) = [1,

√
2x, x2]T . (This

is equivalent to using a second order polynomial kernel.) The max margin classifier has the form

min||w||2 s.t. (2)

y1(wTφ(x1) + w0) ≥ 1 (3)

y2(wTφ(x2) + w0) ≥ 1 (4)

1. (6 Points) Write down a vector that is parallel to the optimal vector w. Hint: recall from Figure
14.12 (page 500 in the Murphy text) that w is perpendicular to the decision boundary between the two
points in the 3d feature space.

2. (6 Points) What is the value of the margin that is achieved by this w? Hint: recall that the margin is
the distance from each support vector to the decision boundary. Hint 2: think about the geometry of
2 points in space, with a line separating one from the other.

3. (6 Points) Solve for w, using the fact the margin is equal to 1/||w||.

4. (6 Points) Solve for w0 using your value for w and Equations 2 to 4. Hint: the points will be on the
decision boundary, so the inequalities will be tight. A “tight inequality” is an inequality that is as
strict as possible. For this problem, this means that plugging in these points will push the left-hand
side of Equations 3 and 4 as close to 1 as possible.

2

5. (6 Points) Write down the form of the discriminant function f(x) = w0+wTφ(x) as an explicit function
of x. Plot the 2 points in the dataset, along with f(x) in a 2d plot. You may generate this plot by
hand, or using a computational tool like R or Matlab.

4 Programming Question [35 Points]

In this problem, we seek to perform a digit recognition task, where we are given an image of a handwritten
digit and wish to predict what number it represents. This is a special case of an important area of language
processing known as Optical Character Recognition (OCR). We will be simplifying our goal to that of a
binary classification between two relatively hard-to-distinguish numbers (specifically, predicting a ’3’ versus
a ’5’). To do this, you will implement a kernelized version of the Perceptron algorithm.

4.1 Dataset

The digit images have been taken from the Kaggle competition linked to on the projects page, http:

//www.kaggle.com/c/digit-recognizer/data. This data was originally from the MNIST database of
handwritten digits, but was converted into a easier-to-use file format.

The data has also undergone some preprocessing. It has been filtered to just those datapoints whose
labels are 3 or 5, which have then been relabeled to 1 and -1 respectively. Then, 1000-point samples have
been created, named validation.csv and test.csv. The first column of these files is the label of each point,
followed by the grayscale value of each pixel.

4.2 Perceptron

In the basic Perceptron algorithm, we keep track of a weight vector w, and define our prediction to be
ŷ(t) = sign(w · x(t)). If we predict a point correctly, we make no update and continue running. Any time we
make a mistake, our update step is

w(t+1) ← w(t) + y(t)x(t),

so at time t, w(t) =
∑

i∈M(t)

yixi

where M (t) is the set of mistakes made up to time t.

4.3 Kernels

To apply the kernel trick, we would like to replace x and w with Φ(x) and Φ(w), where Φ : X → F
is a mapping into some high- or infinite-dimensional space. For example, Φ could map to the set of all
polynomials of degree exactly d. To do this, we try to find a function k for this particular Φ that has the
property k(u, v) = Φ(u) · Φ(v) for every u and v. The trick, however, is that although this function lets us
compute dot products easily, we must not actually deal with any Φ(x) directly. Because of this, the natural
extension of storing our weight vector doesn’t work:

Φ(w(t)) =
∑

i∈M(t)

yiΦ(xi)

would require both computing the sum of Φ(xi) explicitly and storing it as Φ(w). As stated above, Φ(w)
could have millions (or in fact an infinite number) of terms, so this can quickly become impractical. Instead,
we can rely on the fact that our prediction becomes

ŷ(t) = sign(Φ(w) · Φ(x)) = sign

 ∑
j∈M(t)

yjΦ(xj) · Φ(x(t))

 = sign

 ∑
j∈M(t)

yjk(xj , x(t))

3

http://www.kaggle.com/c/digit-recognizer/data
http://www.kaggle.com/c/digit-recognizer/data

This means that it’s possible for us to store the (xj , yj) pairs of our mistakes M (t), and use these to compute
our dot product Φ(w) · Φ(x).

The drawback of this is that we are now storing a list of all mistakes we ever make, which is quite a
bit more overhead than simply w in the case without kernels. This also means that if we make too many
mistakes, performing the dot product can become quite slow. However, we are now able to build much more
complex models, and changing between models is as easy as switching kernel functions.

4.4 Task

Hint: It is probably a good idea to write your Perceptron implementation so that it can be passed a kernel
function as an argument. If you wish to apply a function to each row of a matrix in R, the built-in ”apply”
function is much more efficient than using a loop.

1. (15 Points) First, get Perceptron working with the kernel k1p(u, v) = u · v + 1.

(k1p is what the standard dot product would give us, if we had added a constant term x0 ≡ 1.)

Run Perceptron for a single pass over the validation set with this kernel, and plot the average loss L̄
as a function of the number of steps T , where

L̄(T) =
1

T

T∑
j=1

1(ŷ(t) 6= y(t)) (5)

where ŷt is the label that Perceptron predicts for datapoint t as it runs, and 1 is an indicator function,
which is 1 if its condition is true and 0 otherwise. Record the average loss every 100 steps, e.g. [100,
200, 300, ...].

2. (10 Points) For a positive integer d, the polynomial kernel kdp(u, v) = (u ·v+1)d maps X into a feature
space of all polynomials of degree up to d.

For the set d = [1, 3, 5, 7, 10, 15, 20], run Perceptron for a single pass over the validation set with kdp ,

and plot the average loss over the validation set L̄(1000) as a function of d. What value of d produces
the lowest loss?

3. (10 Points) For σ > 0, the Exponential kernel kσE(u, v) = e−
‖u−v‖
2σ2 is a map to all polynomials of x,

where σ is a tuning constant that roughly corresponds to the ”window size” of the exponential. Tuning
on the validation set has produced a value of σ = 10.

For the d you chose in the previous step, run Perceptron with both kdp and k10E for a single pass over

the testing set. For each of these two kernels, plot the average loss L̄(T) as a function of the number
of steps. As above, report the average loss for every 100 steps.

4

	Error bound for 1-nearest neighbor classifier [30 points]
	Learning Theory [5 Points]
	Fitting an SVM classifier by hand [30 Points]
	Programming Question [35 Points]
	Dataset
	Perceptron
	Kernels
	Task

