
CSE446 Machine Learning, Spring 2013: Homework 2

Due: Friday, May 3rd, beginning of class

Instructions There are 3 written questions on this assignment, plus a fifth coding question. Submit both
your written answers (as a .txt or a .pdf) and your implementation to the Dropbox at https://catalyst.
uw.edu/collectit/assignment/darylh/26829/108641

1 Boosting [30 Points]

We learned about boosting in lecture and the topic is covered in Murphy 16.4. On page 555 Murphy claims
that “it was proved that one could boost the performance (on the training set) of any weak learner arbitrarily
high, provided the weak learned could always perform slightly better than chance.” We will now verify this
in the AdaBoost framework.

1. (10 points) Given a set of N observations (xj , yj) where yj is the label yj ∈ {−1, 1}, let ht(x) be the
weak classifier at step t and let αt be its weight. First we note that the final classifier after T steps is
defined as:

H(x) = sgn

{
T∑
t=1

αtht(x)

}
= sgn{f(x)}

Where

f(x) =

T∑
t=1

αtht(x)

Show that:

εTraining =
1

N

N∑
j=1

1{H(xj)6=yj} ≤
1

N

N∑
j=1

exp(−f(xj)yj)

Where 1{H(xj)6=yj} is 1 if H(xj) 6= yj and 0 otherwise.

hint : Consider an arbitrary yj and xj and given that f(xj) < 0 or f(xj) > 0 and yj = 1 or
yj = −1 consider all possible pairs (1{H(xj)6=yj}, exp(−f(xj)yj)). You may also want to recall that
e−x ≥ 1⇔ x ≤ 0.

2. (10 points) The weight for each data point j at step t+ 1 can be defined recursively by:

w
(t+1)
j =

w
(t)
j exp(−αtyjht(xj))

Zt

Where Zt is a normalizing constant ensuring the weights sum to 1:

Zt =

N∑
j=1

wtj exp(−αtyjht(xj))

Show that:

1

N

N∑
j=1

exp(−f(xj)yj) =

T∏
t=1

Zt

1

https://catalyst.uw.edu/collectit/assignment/darylh/26829/108641
https://catalyst.uw.edu/collectit/assignment/darylh/26829/108641

hint : Consider w
(T+1)
j and continue the recursion (i.e. plug in the recursive formula for w

(T)
j in to that

of w
(T+1)
j until using that w1

j = 1
N) and that e

∑
t at =

∏
t e
at . Then use that

∑N
j=1 w

(T+1)
j = 1

3. (10 points) We showed above that training error is bounded above by
∏T
t=1 Zt. At step t the values

Z1, Z2, . . . , Zt−1 are already fixed therefore at step t we can choose αt to minimize Zt. Let

εt =

m∑
i=1

wtj1{ht(xj)6=yj}

be the weighted training error for weak classifier ht(x) then we can re-write the formula for Zt as:

Zt = (1− εt) exp(−αt) + εt exp(αt)

(a) First find the value of αt that minimizes Zt then show that

Zoptt = 2
√
εt(1− εt)

(b) Assume we choose Zt this way. Then re-write εt = 1
2−γt where γt > 0 implies better than random

and γt < 0 implies worse than random. Then show that:

Zt ≤ exp(−2γ2t)

You may want to use the fact that log(1− x) ≤ −x for 0 < x ≤ 1

Thus we have:

εtraining ≤
T∏
t=1

Zt ≤ exp(−2

T∑
t=1

γ2t)

(c) Finally, show that if each classifier is better than random (e.g. γt ≥ γ for all t and γ > 0) that:

εtraining ≤ exp(−2Tγ2)

Which shows that the training error can be made arbitrarily small with enough steps.

2 KNN [5 Points]

The KNN algorithm is highly sensitive to different distance metrics. Consider fitting a KNN algorithm
to four data points labeled a, b, c, d using the standard euclidean distance in R2. Let x = (x1, x2) and
y = (y1, y2) be points in R2 then the Euclidean distance is defined as:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

Now consider fitting those same data points but using the following distance metric:

d′(x, y) =
√

(x1 − y1)2 + (5x2 − 5y2)2

We could, instead of changing the distance metric, change the point locations to reflect the change in metric.
To do this we would multiply the second coordinate of all the points by 5. Consider the following plots.

2

The plot on the left should be read in the usual sense and represents the points under the first distance
metric. The effect of changing our distance metric to d′(x, y) is equivalent to taking all points (x1, x2) and
plotting (x1, 5x2) and calculating distance using the Euclidean metric (so we can “see” how far they are
apart). The plot on the left is of the same four points, however, the second coordinate for all points was
multiplied by 5 . Under the standard metric (the left hand plot) the 1NN of a is b (it’s the closest point).
Under the new metric, however, the 1NN of a is c (it’s the closest point).

1. (1 pt) Can you define points a, b, c, and d such that exactly zero points will change 1NN? If yes,
provide the coordinates of each point and a brief explanation (you may include a diagram).

2. (1 pt) Can you define points a, b, c, and d such that exactly one point will change 1NN? If yes,
provide the coordinates of each point and a brief explanation (you may include a diagram).

3. (1 pt) Can you define points a, b, c, and d such that exactly two points will change 1NN? If yes,
provide the coordinates of each point and a brief explanation (you may include a diagram).

4. (1 pt) Can you define points a, b, c, and d such that exactly three points will change 1NN? If yes,
provide the coordinates of each point and a brief explanation (you may include a diagram).

5. (1 pt) Can you define points a, b, c, and d such that all four points will change 1NN? If yes, provide
the coordinates of each point and a brief explanation (you may include a diagram).

3 Decision Trees [30 Points]

3.1 Two Dimensions

The use of decision trees for classification is discussed in section 16.2 of the Kevin Murphy textbook. Suppose
we are trying to use decision trees to learn the following two-class function:

X1 X2 Y
0 0 -
0 1 +
1 0 +
1 1 -

Table 1: X1 ⊕X2

3

1. (3 points) What is the classification error of a decision tree of depth 0? (That is, a single leaf that
predicts the majority class of the whole dataset)

2. (3 points) What is the best possible classification error of a decision tree of depth 1? Draw such a tree.

3. (3 points) What is the best possible classification error of a decision tree of depth 2? Draw such a tree.

4. (3 points) Suppose our algorithm for building a decision tree followed KM’s Algorithm 16.1, where we
decide a node is not worth splitting if its classification error is not δ better than its parent, for some
δ > 0.1 What kind of tree will this algorithm produce, and what will its classification error be?

5. Suppose instead our criterion was that we would stop if none of our splits resulted in any information
gained. Define the entropy for the two-class case as follows:

If there are P positive examples and N negative examples in a branch, let πP = P
P+N , πN = N

P+N .

Then the entropy is defined as H[P,N] = πP log2(1
πP

) + πN log2(1
πN

).
Suppose a parent node has training data D, which a split partitions into DL and DR. Then the infor-
mation gain is the difference between the entropy of the parent and the entropy of the children. That

is, IG = H[P,N]− (|DL|
|D| H[PL, NL] + |DR|

|D| H[PR, NR]).

(a) (3 points) For the tree you drew of depth 2, calculate the entropy at each split point (as well as
the root).

(b) (3 points) Calculate the information gain at each split point of this tree.

(c) (3 points) If we use this as a criterion for termination, what will our tree look like? What will be
its classification error?

3.2 Multiple Dimensions

Having learned from our mistake in the previous problem, we now decide to change our stopping criterion
to be when the depth of the tree has reached a certain value k. We set k = 100 for now, since that seems
like more than enough. Feeling confident, we’ve decided to attempt to learn a more complicated function,
which turns out to be F = X1 ⊕X2 ⊕ . . .⊕X100 ⊕X101. Assume that we have an equal number of training
examples for each possible value of X ∈ {0, 1}101.

1. (3 points) What is the classification error of a decision tree of depth 0?

2. (3 points) What is the best possible classification error of a decision tree of depth 100? (This is the
best that our algorithm could hope to achieve)

3. (3 points) What is the best possible classification error of a decision tree of depth 101?

4 Programming Question [35 Points]

In this problem, you will train a logistic regression model to predict the Click Through Rate (CTR) on a
dataset with about 10,000 examples. The CTR provides a measure of the popularity of an advertisement,
and the features we will use for prediction include attributes of the ad and the user.

4.1 Unprocessed Dataset

The dataset we will consider comes from the 2012 KDD Cup Track 2. Here, a user types a query and a set
of ads are displayed and we observe which ad was clicked.

For example:

1See Equation 16.9 on page 547

4

1. Alice went to the famous search engine Elgoog, and typed the query “big data”.

2. Besides the search result, Elgoog displayed 3 ads each with some short text including its title, descrip-
tion, etc.

3. Alice then clicked on the first advertisement

This completes a SESSION. At the end of this session Elgoog logged 3 records:

Clicked = 1 | Depth = 3 | Position = 1 | Alice | Text of Ad1 |
Clicked = 0 | Depth = 3 | Position = 2 | Alice | Text of Ad2 |
Clicked = 0 | Depth = 3 | Position = 3 | Alice | Text of Ad3 |

In addition, the log contains information about Alice’s age and gender. Here is the format of a complete
row of our training data:

Clicked | Depth | Position | Userid | Gender | Age | Text Tokens of Ad

Let’s go through each field in detail:

• “Clicked” is either 0 or 1, indicating whether the ad is clicked.

• “Depth” takes a value in {1, 2, ..., } specifying the number of ads displayed in the session.

• “Position” takes a value in {1, 2, ..., Depth} specifying the rank of the ad among all the ads displayed
in the session.

• “Userid” is an integer id of the user.

• “Age” takes a value in {1, 2, 3, 4, 5, 6}, indicating different ranges of a user’s age: ‘’1’ for (0, 12], ‘2’ for
(12, 18], ‘3’ for (18, 24], ‘4’ for (24, 30], ‘5’ for (30, 40], and ‘6’ for greater than 40.

• “Gender” takes a value in {−1, 1}, where -1 stands for male and 1 stands for female.

• “Text Tokens” is a comma separated list of token ids. For example: “15,251,599” means “token 15”,
“token 251”, and “token 599”. (Note that due to privacy issues, the mapping from token ids to words
is not revealed to us in this dataset, e.g., “token 32” to “big”.)

Here is an example that illustrates the concept of features “Depth” and “Position”. Suppose the list
below was returned by Elgoog as a response to Alice’s query. The list has depth = 3. “Big Data” has
position = 1, “Machine Learning” has position = 2 and so forth.

Here is a sample from the training data:
0 | 2 | 2 | 280151 | 1 | 2 | 0, 1, 154, 173, 183, 188, 214, 234, 26, 3, 32, 36, 37, 4503, 51, 679, 7740, 8, 94
The test data are in the same format except that they do not have the first label field, which is stored in

a separate file named “test label.txt”. Some data points do not have user information. In these cases, the
userid, age, and gender are set to zero.

5

4.2 Processed Dataset (that you will use...)

In class, we simply denote

xt = [xt1, ..., x
t
d] (1)

as an abstract feature vector. In the real world, however, constructing the feature vector requires some
thought. We have preprocessed the dataset for you, making the following modifications.

• First of all, not everything in the data should be treated as a feature. In this dataset, “Userid” should
not be treated as feature. We have removed this column from the dataset for you.

• Similarly, we cannot directly use the list of token ids as features in Equation 1 since the numbers are
arbitrarily assigned and thus meaningless for the purposes of regression. Instead, we should think of
the list of token ids L = [l1, l2, l3, ...] as a compact representation of a sparse binary vector b where
b[i] = 1∀i ∈ L. We have replaced the list of words with a list of binary variables indicating token
presence.

• As for the rest of the features: “Depth”, “Position”, “Age”, and ‘Gender”, they are scalar variables,
so we maintain their original values in the dataset.

The dataset that we are giving you has the following form:
Clicked, Depth, Position, Gender, Age, Word1, Word2, Word3, Word4, ..., Word50

So a sample datapoint would be:
0, 1, 2, 1, 12, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

4.3 Accessing and Processing the Data

1. Download the processed version of the dataset “clickprediction data.zip” from the course website.

2. After unzipping the folder, there should be three files: train.txt, test.txt and test label.txt.

3. The following set of commands should load the training data to get you started:

trainingMatrix <- read.csv("train.txt", header=FALSE)

y <- as.matrix(trainingMatrix[,1])

trainingX <- trainingMatrix[,-1]

x <- as.matrix(cbind(rep(1, dim(trainingX)[1]),trainingX))

4.4 Stochastic Gradient Descent

Recall that stochastic gradient descent (SGD) performs a gradient descent using a noisy estimate of the full
gradient based on just the current example.

1. Write down the equation for the weight update step. That is, how to update weights wt using the data
point (xt, yt), where xt = [xt1, x

t
2, ..., x

t
d] is the feature vector for example t, and yt ∈ {0, 1} is the label.

2. For stepsizes η = {0.5, 0.25, 0.125} and without regularization, implement SGD and train the weights
by making one pass over the dataset. You may assume that the data is randomly ordered. Use only
one pass over the data on all subsequent questions as well. For each step size:

6

(a) Plot the average loss L̄ as a function of the number of steps T , where

L̄(T) =
1

T
ΣTt=1(ŷt − yt)2 (2)

where ŷt (either 0 or 1) is the predicted label of example xt using the weights wt−1. Record the
average loss every 100 steps, e.g. [100, 200, 300, ...].

(b) Report the l2 norm of the weights at the end of the pass. Note that if your l2 norm is not small
and keeps growing as you get more and more data, adding l2 regularization to each update state
becomes necessary. However, implementing the addition of l2 regularization is beyond the scope
of this problem set, so you are not expected to do so.

(c) Use the weights to predict the CTRs for the test data. Recall that “test label.txt” contains the
labels for the test data. Report the SSE (sum of squared erros) of your predicted CTR. Make
sure to use the SSE for the 0/1 prediction. (Do not expect a huge improvement since the label
distribution is biased. Elgoog still makes a huge profit even with a 0.1% improvement in accuracy.)

3. For η = 0.125, report the weights for the following features: intercept, “Position”, “Depth”, “Gender”,
and “Age”. Provide an interpretation of the effect of each feature on the probability of a click based
on these inferred weights.

7

	Boosting [30 Points]
	KNN [5 Points]
	Decision Trees [30 Points]
	Two Dimensions
	Multiple Dimensions

	Programming Question [35 Points]
	Unprocessed Dataset
	Processed Dataset (that you will use...)
	Accessing and Processing the Data
	Stochastic Gradient Descent

