Ensembles of Classifiers

- **Traditional approach**: Use one classifier
- **Can one do better?**
- **Approaches**:
 - Cross-validated committees
 - Bagging
 - Boosting
 - Stacking

Ensembles of Classifiers

- **Assume**
 - Errors are independent (suppose 30% error)
 - Majority vote
- **Probability that majority is wrong...**
 - Area under binomial distribution
 - If individual area is 0.3
 - Area under curve for ≥11 wrong is 0.026
 - Order of magnitude improvement!

Bagging Example

- **BAGGing = Bootstrap AGGregation**
 - (Breiman, 1996)
 - For \(m = 1, 2, ..., M \):
 - \(B_m \leftarrow \) randomly select \(N \) training instances with replacement
 - \(C_m \leftarrow \) learn\((B_m) \) [ID3, NB, kNN, neural net, ...]
 - Combine the \(C_m \) together
 - Uniform voting \((\alpha_m = 1/K \) for all \(i \))

\[\text{CART decision boundary} \]
Ensemble Creation III

Boosting – Incorrect Version

- Maintain prob distribution over set of training ex
- Create M sets of training data iteratively:
 - On iteration \(m \)
 - Draw \(m \) examples randomly (like bagging)
 - But use probability distribution to bias selection
 - Train classifier number \(i \) on this training set
 - Modify distribution: increase \(P \) of each error example
 - Assign confidence to classifier \(I = f(error) \)
- Create harder and harder learning problems...
- "Bagging with optimized choice of examples"

Bagging vs Boosting

Bias, Variance, and Noise

- **Variance:** \(E[(h(x*) - \hat{h}(x*))^2] \)
 Describes how much \(h(x*) \) varies from one training set \(S \) to another
- **Bias:** \([h(x*) - f(x*)] \)
 Describes the average error of \(h(x*) \).
- **Noise:** \(E[(y* - f(x*))^2] = E[\epsilon^2] = \sigma^2 \)
 Describes how much \(y* \) varies from \(f(x*) \)

© Daniel S. Weld 10

© Daniel S. Weld 11
Bias / Variance Tradeoff

Decreasing bias increases variance
Want the best compromise
1st Order Polynomial

- Image of a 1st order polynomial graph.

9th Order Polynomial

- Image of a 9th order polynomial graph.

Regularization

\[
\overline{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2
\]

Penalize large coefficient values

Increasing \(\lambda \) trades bias for variance

Regularization: \(\ln \lambda = -18 \)

- Image of a graph showing regularization with \(\ln \lambda = -18 \).

Regularization: \(\ln \lambda = 0 \)

- Image of a graph showing regularization with \(\ln \lambda = 0 \).

Regularization: \(E_{RMS} vs. \ln \lambda \)

- Image of a graph showing \(E_{RMS} \) vs. \(\ln \lambda \).
Punchline

- Ensembles trade bias & variance
- Bagging reduces variance (bias almost unchanged)
 - Use with low bias learner, eg full decision tree
 - (Bagging decision stumps performs poorly)
- Boosting can reduce both
 - Often used with high bias learners, eg decision stumps

Boosting

Idea: run weak learner multiple times on (reweighted!) training data; weight learned classifiers \(\propto \) their accuracy

On each iteration \(t \):
- Learn a hypothesis, \(h_t \), using distribution to weight examples
- Compute a strength for this hypothesis \(\alpha_t \)
- Reweight training examples by how well they were classified

Final classifier:

\[
\hat{h}(x) = \text{sign} \left(\sum_{t} \alpha_t h_t(x) \right)
\]

- Practically useful
- Theoretically interesting

Boosting Applet

http://cseweb.ucsd.edu/~yfreund/adaboost/index.html
Learning from weighted data

- Consider a weighted dataset
 - $D(j)$ – weight of jth training example (x,y)
 - Interpretations:
 - jth training example counts as if it occurred $D(j)$ times
 - If I were to “resample” data, I would get more samples of “heavier” data points
 - Now, always do weighted calculations:
 - e.g., MLE for Naïve Bayes, redefine $\text{Count}(Y=y)$ to be weighted count:
 \[
 \text{Count}(Y = y) = \sum_{j=1}^{n} D(j) \delta(Y^j = y)
 \]
 where δ is the Kronecker delta function.

\[
\text{Final Result: linear sum of “base” or “weak” classifier outputs.}
\]
What \(\alpha_t \) to choose for hypothesis \(h_t \)?

Idea: choose \(\alpha_t \) to minimize a bound on training error!

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = Z_t
\]

Where

\[
f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x))
\]

This equality isn’t obvious! Can be shown with algebra (telescoping sums).

If we minimize \(\prod Z_t \), we minimize our training error!!!

- We can tighten this bound greedily, by choosing \(\alpha_t \) and \(h_t \) on each iteration to minimize \(Z_t \).
- \(h_t \) is estimated as a black box, but can we solve for \(\alpha_t \)?

Summary: choose \(\alpha_t \) to minimize error bound

We can squeeze this bound by choosing \(\alpha_t \) on each iteration to minimize \(Z_t \):

\[
Z_t = \frac{1}{m} \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

For boolean \(Y \): differentiate, set equal to 0, there is a closed form solution! [Freund & Schapire ’97]:

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

Why Does Boosting Work So Well?

- On each iteration:
 - Learn a classifier, \(h_t \), using distribution to weight examples
 - Compute a strength for this classifier – \(\alpha_t \)
 - Reweight training examples by how well they were classified

- Final classifier:

\[
h(x) = \text{sign} \left(\sum_{t} \alpha_t h_t(x) \right)
\]

- Look familiar?
 - Another linear model, except...
 - Not in terms of original features
 - Creates new features (classifiers, \(h_t \)) while it learns weights

Strong, weak classifiers

- If each classifier is (at least slightly) better than random: \(\epsilon_t < 0.5 \)
- Another bound on error:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{i=1}^{t} Z_i \leq \exp \left(2 \sum_{i=1}^{t} (1/2 - \epsilon_i)^2 \right)
\]

- What does this imply about the training error?
 - Will reach zero!
 - Will get there exponentially fast!
Boosting results – Digit recognition
[Schapire, 1989]

- Boosting:
 - Seems to be robust to overfitting
 - Test error can decrease even after training error is zero!!

Boosting: Experimental Results
[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

What you need to know about Boosting

- Combine weak classifiers to get very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can get zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Both linear model, boosting “learns” features
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier