Ensembles of Classifiers

- Traditional approach: Use one classifier
- Can one do better?
- Approaches:
 - Cross-validated committees
 - Bagging
 - Boosting
 - Stacking

Voting

- Assume
 - Errors are independent (suppose 30% error)
 - Majority vote
- Probability that majority is wrong...
 - $\prob = \text{area under binomial distribution}$
- If individual area is 0.3
- Area under curve for ≥ 11 wrong is 0.026
- Order of magnitude improvement!

Constructing Ensembles

Cross-validated committees

- Partition examples into k disjoint equiv classes
- Now create k training sets
 - Each set is union of all equiv classes except one
 - So each set has $(k-1)/k$ of the original training data
- Now train a classifier on each set

Ensemble Construction II

Bagging

- Generate k sets of training examples
- For each set
 - Draw m examples randomly (with replacement)
 - From the original set of m examples
- Each training set corresponds to
 - 63.2% of original (+ duplicates)
- Now train classifier on each set
- Intuition: Sampling helps algorithm become more robust to noise/outliers in the data
Ensemble Creation III
Boosting

- Create 1st weight distribution (uniform) over training ex: \(\{w_1^1\} \)
- Create M classifiers iteratively:
 - On iteration \(m \)
 - Train \(C_m \) by minimizing \(\sum w_m^i [y(x_i) \neq t] \)
 - Modify distribution: increase \(P \) of each example predicted incorrectly
 - Assign confidence to classifier \(C_m = f(\text{error}) \); prefer accurate ones

- Combine
- Create harder and harder learning problems...
- Optimized choice of examples

Boosting Decision Stumps

Bagging vs Boosting

Ensemble Creation IV
Stacking

- Train several base learners
- Next train meta-learner
 - Learns when base learners are right / wrong
 - Now meta learner arbitrates

- Train using cross validated committees
 - Meta-L inputs = base learner predictions
 - Training examples = 'test set' from cross validation

Causes of Expected Error

- Variance:
 - How much \(h(x^*) \) varies from one training set to another
- Bias:
 - Describes the \textit{average} error of \(h(x^*) \).
- Noise:
 - Describes how much \(y^* \) varies from \(f(x^*) \)

Tradeoff

- Overfitting – too much variance
- Underfitting – too much bias
Interlude: Bias

• Bias (Statistical)
 – the difference between an estimator’s expectation and the true value of the parameter being estimated.

• Inductive Bias
 – Set of assumptions that the learner uses to predict outputs given inputs that it has not encountered

• Bias (Engineering)
 – establishing predetermined voltage at a point in a circuit to set an appropriate operating point.

 \[y = w_0 + \sum w_i x_i \]

Bias-Variance Analysis in Regression

• True function is \(y = f(x) + \varepsilon \)
 – where \(\varepsilon \) is normally distributed with zero mean and standard deviation \(\sigma \).

• Given a set of training examples, \(\{(x_i, y_i)\} \), we fit an hypothesis \(h(x) = w \cdot x + b \) to the data to minimize the squared error
 \[\sum_i (y_i - h(x_i))^2 \]

Example: 20 points

\[y = x + 2 \sin(1.5x) + N(0,0.2) \]

50 fits (20 examples each)

Bias-Variance Analysis

• Now, given a new data point \(x^* \) (with observed value \(y^* = f(x^*) + \varepsilon \)), we would like to understand the expected prediction error

\[E[(y^* - h(x^*))^2] \]

Classical Statistical Analysis

• Imagine that our particular training sample \(S \) is drawn from some population of possible training samples according to \(P(S) \).

• Compute \(E_p [(y^* - h(x^*))^2] \)

• Decompose this into “bias”, “variance”, and “noise”
Lemma

- Let Z be a random variable with probability distribution $P(Z)$.
- Let $Z = E[Z]$ be the average value of Z.
 - $E[Z^2] - Z^2$

Bias-Variance-Noise Decomposition

$E[(h(x^*) - y^*)^2] = E[h(x^*)^2 - 2h(x^*)y^* + y^{*2}]$

$= E[h(x^*)^2] - 2E[h(x^*)]E[y^*] + E[y^{*2}]$

$= E[(h(x^*) - h(x^*))^2] + h(x^*)^2$ (lemma)

$- 2h(x^*)f(x^*)$

$+ E[(y^* - f(x^*))^2] + f(x^*)^2$ (lemma)

$= E[(h(x^*) - h(x^*))^2] + [bias^2]$

$+ E[(y^* - f(x^*))^2] + [noise]$

Bias, Variance, and Noise

- Variance: $E[(h(x^*) - h(x^*))^2]$
 Describes how much $h(x^*)$ varies from one training set S to another.
- Bias: $[h(x^*) - f(x^*)]$
 Describes the average error of $h(x^*)$.
- Noise: $E[(y^* - f(x^*))^2] = E[\epsilon^2] = \sigma^2$
 Describes how much y^* varies from $f(x^*)$.

50 fits (20 examples each)
Noise

50 fits (20 examples each)

Distribution of predictions at x=2.0

Distribution of predictions at x=5.0

Polynomial Curve Fitting

Hypothesis Space

\[p(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j \]
Regularization:

\[
\tilde{E}(w) = \frac{1}{2} \sum_{n=1}^{N} (y_n(x_n, w) - t_n)^2 + \frac{\lambda}{2} \|w\|^2
\]

Penalize large coefficient values

Increasing \(\lambda \) trades bias for variance

Regularization: \(\ln \lambda = -18 \)

Regularization: \(\ln \lambda = 0 \)
Ensemble Methods

- Combining many biased learners
 - Eg decision stumps
- Keeps variance low
- Can represent more expressive hypotheses
 - Hence, also lowers error from bias