A learning problem: predict fuel efficiency

- 40 Records
- Discrete data (for now)
- Predict MPG

From the UCI repository (thanks to Ross Quinlan)

Overview of Learning

<table>
<thead>
<tr>
<th>Type of Supervision</th>
<th>Labeled Examples</th>
<th>Reward</th>
<th>Nothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Function</td>
<td>Classification</td>
<td></td>
<td>Clustering</td>
</tr>
<tr>
<td>Continuous Function</td>
<td>Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>Apprenticeship Learning</td>
<td>Reinforcement Learning</td>
<td></td>
</tr>
</tbody>
</table>

Hypotheses: decision trees \(f : X \rightarrow Y \)

- Each internal node tests an attribute \(x_i \).
- Each branch assigns an attribute value \(x_i = v \).
- Each leaf assigns a class \(y \).
- To classify input \(x \)?
 traverse the tree from root to leaf, output the labeled \(y \).

Hypothesis space

- How many possible hypotheses?
- What functions can be represented?
- How many will be consistent with a given dataset?
- How will we choose the best one?

Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
 e.g., \(\phi = (A \land B) \lor (\neg A \land C) \)

- Which tree do we prefer?
Learning decision trees is hard!!!

- Finding the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Improving Our Tree

Recursive Step

Build tree from these records...

A full tree

Two Questions

Greedy Algorithm:
- Start from empty decision tree
- Split on the best attribute (feature)
- Recurse

1. Which attribute gives the best split?
2. When to stop recursion?

Which attribute gives the best split?

A1: The one with the highest information gain
 Defined in terms of entropy

A2: Actually many alternatives, eg, accuracy
 Seeks to reduce the misclassification rate
Entropy

Entropy $H(Y)$ of a random variable Y

$$H(Y) = - \sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation:
$H(Y)$ is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code).

Entropy Example

$$H(Y) = - \sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

$P(Y=t) = \frac{5}{6}$

$P(Y=f) = \frac{1}{6}$

$$H(Y) = - \frac{5}{6} \log_2 \frac{5}{6} - \frac{1}{6} \log_2 \frac{1}{6}$$

$= 0.65$

Conditional Entropy

Conditional Entropy $H(Y|X)$ of a random variable Y conditioned on a random variable X:

$$H(Y|X) = - \sum_{j=1}^{l} P(X=x_j) \sum_{i=1}^{k} P(Y=y_i | X=x_j) \log_2 P(Y=y_i | X=x_j)$$

Example:

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$P(X_1=t) = \frac{4}{6}$

$P(X_1=f) = \frac{2}{6}$

$H(Y|X_1) = - \frac{4}{6} (1 \log_2 1 + 0 \log_2 0)$

$= \frac{2}{6}$

$= 0.33$

Information Gain

Advantage of attribute — decrease in entropy (uncertainty) after splitting

$$IG(X) = H(Y) - H(Y | X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

$= 0.65 - 0.33$

$= 0.32$

$IG(X_1) > 0 \rightarrow$ we prefer the split!

Alternate Splitting Criteria

- **Misclassification Impurity**
 Minimum probability that a training pattern will be misclassified

 $$M(Y) = 1 - \max_i P(Y=y_i)$$

- **Misclassification Gain**

 $$IG_m(X) = \left[1 - \max_i P(Y=y_i)\right] - \left[\max_j \left(\max_i P(Y=y_i | x=x_j)\right)\right]$$

Learning Decision Trees

- Start from empty decision tree
- Split on **next best attribute (feature)**
 - Use information gain (or...?) to select attribute:

 $$\arg \max_i IG(X_i) = \arg \max_i H(Y) - H(Y | X_i)$$

- Recurse
Suppose we want to predict MPG

Now, Look at all the information gains...

When to Terminate?

Base Case Two: No attributes can distinguish

Base Case Two

Don’t split a node if none of the attributes can create multiple (non-empty) children

Tree After One Iteration

Base Case One

Don’t split a node if all matching records have the same output value
Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don’t recurse
- Base Case Two: If all records have exactly the same set of input attributes then don’t recurse

Proposed Base Case 3: If all attributes have zero information gain then don’t recurse

Is this a good idea?

The problem with Base Case 3

\[y = a \text{ XOR } b \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The resulting decision tree:

<table>
<thead>
<tr>
<th>y values</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Predict 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The information gains:

Building Decision Trees

BuildTree(DataSet, Output)

If all output values are the same in dataSet,

Then return a leaf node that says “predict this unique output”

If all input values are the same,

Then return a leaf node that says “predict the majority output”

Else find attribute \(X \) with highest Info Gain

Suppose \(X \) has \(n_x \) distinct values (i.e. \(X \) has arity \(n_x \)).

Create and return a non-leaf node with \(n_x \) children.

The \(i^\text{th} \) child is built by calling BuildTree(DS\(_i\), Output)

Where DS\(_i\) consists of all those records in DataSet for which \(X = i^\text{th} \) distinct value of \(X \).

General View of a Classifier

Hypothesis: Decision Boundary for labeling function

<table>
<thead>
<tr>
<th>Label: +</th>
<th>Label: -</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>(0.0)</td>
<td></td>
</tr>
<tr>
<td>(1.0)</td>
<td></td>
</tr>
<tr>
<td>(2.0)</td>
<td></td>
</tr>
<tr>
<td>(3.0)</td>
<td></td>
</tr>
</tbody>
</table>

Decision Tree Decision Boundaries

Decision trees divide the feature space into non-parallel rectangles, and label each rectangle with one of the \(K \) classes.
Ok, so how does it perform?

The test set error is much worse than the training set error… why?

Decision trees will overfit

• Our decision trees have no learning bias
 – Training set error is always zero!
 • (if there is no label noise)
 – Lots of variance
 – Will definitely overfit!!!
 – Must introduce some bias towards simpler trees

• Why might one pick simpler trees?

Occam’s Razor

• Why Favor Short Hypotheses?
 • Arguments for:
 – Fewer short hypotheses than long ones
 → A short hyp. less likely to fit data by coincidence
 – Longer hyp. that fit data may might be coincidence
 • Arguments against:
 – Argument above on really uses the fact that hypothesis space is small!!
 – What is so special about small sets based on the complexity of each hypothesis?

How to Build Small Trees

Several reasonable approaches:

• Stop growing tree before overfit
 – Bound depth or \# leaves
 – Base Case 3
 – Doesn’t work well in practice

• Grow full tree; then prune
 – Optimize on a held-out (development set)
 • If growing the tree hurts performance, then cut back
 – Con: Requires a larger amount of data...
 – Use statistical significance testing
 • Test if the improvement for any split is likely due to noise
 • If so, then prune the split!
 – Convert to logical rules
 • Then simplify rules
Reduced Error Pruning

Split data into *training & validation* sets (10-33%)

Train on training set (overfitting)

Do until further pruning is harmful:

1) Evaluate effect on validation set of pruning *each* possible node (and tree below it)
2) Greedily remove the node that *most improves* accuracy of validation set

Effect of Reduced-Error Pruning

Alternatively

- Chi-squared pruning
 - Grow tree fully
 - Consider leaves in turn
 - Is parent split worth it?
- Compared to Base-Case 3?

A chi-square test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we’d have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 13.5%

Such hypothesis tests are relatively easy to compute, but involved

Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which \(p_{\text{chance}} > \text{MaxPchance} \)
 - Continue working you way up until there are no more prunable nodes

\(\text{MaxPchance} \) is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise.
Regularization

- Note for Future: MaxPChance is a regularization parameter that helps us bias towards simpler models.

![Graph showing the relationship between MaxPChance and tree size]

We’ll learn to choose the value of magic parameters like this one later!

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials
- Improved by
 - Carlos Guestrin &
 - Luke Zettlemoyer