Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra

- Read Sections 2.4, 5.1, and 5.2
 - [Old edition: 5.1 through 5.4]
 - These book sections go over relational operators
The WHAT and the HOW

- In SQL, we write **WHAT** we want to get from the data

- The database system needs to figure out **HOW** to get the data we want

- The passage from **WHAT** to **HOW** goes through the **Relational Algebra**
SQL = WHAT

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
x.price > 100 and z.city = ‘Seattle’

It’s clear WHAT we want, unclear HOW to get it
Relational Algebra = HOW

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Temporary tables T1, T2, ...

Product

_purchase(pid, pid, cid, store)

Customer

Customer(cid, name, city)

Final answer

T4(name, name)

T3(…)

\(\delta \)

\(\pi x.name, z.name \)

\(\sigma \text{ price}>100 \text{ and city='Seattle'} \)

T2(…)

T1(pid, name, price, pid, cid, store)
Relational Algebra = HOW

The order is now clearly specified:

- Iterate over PRODUCT...
- ...join with PURCHASE...
- ...join with CUSTOMER...
- ...select tuples with Price>100 and City=‘Seattle’...
- ...eliminate duplicates...
- ...and that’s the final answer!
Relations

- A relation is a set of tuples
 - Sets: \{a,b,c\}, \{a,d,e,f\}, \{\}\,\ldots

- But, commercial DBMS’s implement relations that are bags rather than sets
 - Bags: \{a, a, b, c\}, \{b, b, b, b, b\}, \ldots
Sets v.s. Bags

Relational Algebra has two flavors:

- **Over sets**: theoretically elegant but limited
- **Over bags**: needed for SQL queries + more efficient
 - Example: Compute average price of all products

We discuss set semantics

- We mention bag semantics only where needed
Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
Relational Algebra

- **Query language** associated with relational model

- Queries specified in an operational manner
 - A query gives a step-by-step procedure

- **Relational operators**
 - Take one or two relation instances as argument
 - Return one relation instance as result
 - Easy to compose into relational algebra expressions
Relational Algebra (1/3)

Five basic operators:

- **Union** (\cup) and **Set difference** (\neg)
- **Selection**: $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (\wedge, \vee) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: $<, \leq, =, \neq, \geq, \text{or } >$
- **Projection**: $\pi_{\text{list-of-attributes}}(S)$
- **Cross-product** or **cartesian product** (\times)
Relational Algebra (2/3)

Derived or auxiliary operators:

- **Intersection** (\cap), **Division** (R/S)
- **Join**: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- **Variations of joins**
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- **Rename** $\rho_{B_1,\ldots,B_n}(S)$
Extensions for bags

- Duplicate elimination: δ
- Group by: γ [Same symbol as aggregation]
 - Partitions tuples of a relation into “groups”
- Sorting: τ

Other extensions

- Aggregation: γ (min, max, sum, average, count)
Union and Difference

- R1 ∪ R2
 - Example: ActiveEmployees ∪ RetiredEmployees

- R1 – R2
 - Example: AllEmployees – RetiredEmployees

Be careful when applying to bags!
What about Intersection?

- It is a derived operator
- \(R1 \cap R2 = R1 - (R1 - R2) \)
- Also expressed as a join (will see later)
- Example
 - UnionizedEmployees \(\cap \) RetiredEmployees
Relational Algebra (1/3)

Five basic operators:

- **Union** (\(\cup\)) and **Set difference** (\(-\))
- **Selection**: \(\sigma_{\text{condition}}(S)\)
 - Condition is Boolean combination (\(\land, \lor\)) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: \(<, \leq, =, \neq, \geq, \text{or } >\)
- **Projection**: \(\pi_{\text{list-of-attributes}}(S)\)
- **Cross-product** or **cartesian product** (\(\times\))
Selection

- Returns all tuples that satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\sigma_{\text{name} = "Smith"}$ (Employee)
- The condition c can be
 - Boolean combination (\land, \lor) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: $<$, \leq, $=$, \neq, \geq, or $>$

Maps to the WHERE clause in SQL!
Selection example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>20000</td>
</tr>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>60000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>50000</td>
</tr>
</tbody>
</table>

\[
\sigma_{\text{Salary} > 40000} \ (\text{Employee})
\]

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>60000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>50000</td>
</tr>
</tbody>
</table>
Projection

- Eliminates columns
- Notation: \(\pi_{A_1, \ldots, A_n}(R) \)
- Example: project social-security number and names:
 - \(\pi_{SSN, Name}(Employee) \)
 - Output schema: Answer(SSN, Name)

Semantics differs over set or over bags
Projection example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>20000</td>
</tr>
<tr>
<td>5423341</td>
<td>John</td>
<td>60000</td>
</tr>
<tr>
<td>4352342</td>
<td>John</td>
<td>20000</td>
</tr>
</tbody>
</table>

\[\pi_{\text{Name}, \text{Salary}} \text{(Employee)} \]

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>20000</td>
</tr>
<tr>
<td>John</td>
<td>60000</td>
</tr>
</tbody>
</table>
Example

Bag semantics: no duplicate elimination; need explicit δ

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>20000</td>
</tr>
<tr>
<td>5423341</td>
<td>John</td>
<td>60000</td>
</tr>
<tr>
<td>4352342</td>
<td>John</td>
<td>20000</td>
</tr>
</tbody>
</table>

$\pi_{\text{Name,Salary}}(\text{Employee})$

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>20000</td>
</tr>
<tr>
<td>John</td>
<td>60000</td>
</tr>
<tr>
<td>John</td>
<td>20000</td>
</tr>
</tbody>
</table>
Selection & Projection Examples

Patient

<table>
<thead>
<tr>
<th>no</th>
<th>name</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p1</td>
<td>98125</td>
<td>flu</td>
</tr>
<tr>
<td>2</td>
<td>p2</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>3</td>
<td>p3</td>
<td>98120</td>
<td>lung</td>
</tr>
<tr>
<td>4</td>
<td>p4</td>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

$\sigma_{\text{disease='heart'}(\text{Patient})}$

<table>
<thead>
<tr>
<th>no</th>
<th>name</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>p2</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>4</td>
<td>p4</td>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

$\pi_{\text{zip,disease}}(\text{Patient})$

<table>
<thead>
<tr>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>98125</td>
<td>flu</td>
</tr>
<tr>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>98120</td>
<td>lung</td>
</tr>
<tr>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

$\pi_{\text{zip}}(\sigma_{\text{disease='heart'}(\text{Patient})})$

<table>
<thead>
<tr>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>98120</td>
</tr>
<tr>
<td>98125</td>
</tr>
</tbody>
</table>
Relational Algebra (1/3)

Five basic operators:
- **Union** (\cup) and **Set difference** ($-$)
- **Selection**: $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (\wedge, \vee) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: $<$, \leq, $=$, \neq, \geq, or $>$
- **Projection**: $\pi_{\text{list-of-attributes}}(S)$
- **Cross-product** or **cartesian product** (\times)
Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: $R_1 \times R_2$
- Example:
 - Employee \times Dependents
- Rare in practice; mainly used to express joins
Cartesian Product Example

Employee

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>999999999</td>
</tr>
<tr>
<td>Tony</td>
<td>777777777</td>
</tr>
</tbody>
</table>

Dependents

<table>
<thead>
<tr>
<th>EmployeeSSN</th>
<th>Dname</th>
</tr>
</thead>
<tbody>
<tr>
<td>999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>

Employee x Dependents

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>EmployeeSSN</th>
<th>Dname</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>999999999</td>
<td>999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>John</td>
<td>999999999</td>
<td>777777777</td>
<td>Joe</td>
</tr>
<tr>
<td>Tony</td>
<td>777777777</td>
<td>999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>Tony</td>
<td>777777777</td>
<td>777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>
Relational Algebra (2/3)

Derived or auxiliary operators:
- Intersection (\(\cap\)), Division (\(R/S\))
- Join: \(R \bowtie_\theta S = \sigma_\theta(R \times S)\)
- Variations of joins
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- Rename \(\rho_{B_1,\ldots,B_n}(S)\)
Renaming

- Changes the schema, not the instance
- Notation: $\rho_{B_1, \ldots, B_n}(R)$
- Example:
 - $\rho_{\text{LastName}, \text{SocSecNo}}(\text{Employee})$
 - Output schema:
 Answer(\text{LastName}, \text{SocSecNo})
Renaming Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
</tr>
</tbody>
</table>

\[\rho_{LastName, SocSecNo} \ (Employee) \]

<table>
<thead>
<tr>
<th>LastName</th>
<th>SocSecNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
</tr>
</tbody>
</table>
Relational Algebra (2/3)

Derived or auxiliary operators:

- **Intersection** (\cap), **Division** (R/S)
- **Join**: $R \bowtie_\theta S = \sigma_\theta (R \times S)$
- **Variations of joins**
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- **Rename** $\rho_{B_1,\ldots,B_n}(S)$
Different Types of Join

- **Theta-join**: \(R \bowtie_{\theta} S = \sigma_{\theta}(R \times S) \)
 - Join of \(R \) and \(S \) with a join condition \(\theta \)
 - Cross-product followed by selection \(\theta \)

- **Equijoin**: \(R \bowtie_{\theta} S = \pi_{A}(\sigma_{\theta}(R \times S)) \)
 - Join condition \(\theta \) consists only of equalities
 - Projection \(\pi_{A} \) drops all redundant attributes

- **Natural join**: \(R \bowtie S = \pi_{A}(\sigma_{\theta}(R \times S)) \)
 - Equijoin
 - Equality on all fields with same name in \(R \) and in \(S \)
Theta-Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

\[
P \Join_{P\text{.age}=J\text{.age} \land P\text{.zip}=J\text{.zip} \land P\text{.age} < 50} J
\]

<table>
<thead>
<tr>
<th>P\text{.age}</th>
<th>P\text{.zip}</th>
<th>disease</th>
<th>job</th>
<th>J\text{.age}</th>
<th>J\text{.zip}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>
Equijoin Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

\[
P \Join_{\text{P.age} = \text{J.age}} J
\]

<table>
<thead>
<tr>
<th>age</th>
<th>P.zip</th>
<th>disease</th>
<th>job</th>
<th>J.zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
<td>98125</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
<td>98120</td>
</tr>
</tbody>
</table>
Natural Join Example

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>zip</td>
<td>disease</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td></td>
</tr>
</tbody>
</table>

AnonPatient P

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>job</td>
<td>age</td>
<td>zip</td>
<td></td>
</tr>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
<td></td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
<td></td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>age</th>
<th>P.zip</th>
<th>disease</th>
<th>job</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
</tr>
</tbody>
</table>
So which join is it?

- When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context.
More Joins

- **Outer join**
 - Include tuples with no matches in the output
 - Use NULL values for missing attributes

- **Variants**
 - Left outer join
 - Right outer join
 - Full outer join
Outer Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
<tr>
<td>33</td>
<td>98120</td>
<td>lung</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

P \bowtie V

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
<th>job</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
</tr>
<tr>
<td>33</td>
<td>98120</td>
<td>lung</td>
<td>null</td>
</tr>
</tbody>
</table>
Semijoin

- $R \bowtie S = \Pi_{A_1, \ldots, A_n} (R \bowtie S)$
- Where A_1, \ldots, A_n are the attributes in R
- Example:
 - Employee \bowtie Dependents
Semijoins in Distributed Databases

- Semijoins are used in distributed databases

Employee

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Dependents

<table>
<thead>
<tr>
<th>SSN</th>
<th>Dname</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Network

\[
\text{Employee} \bowtie_{\text{ssn}=\text{ssn}} (\sigma_{\text{age}>71} (\text{Dependents}))
\]

\[R = \text{Employee} \bowtie T\]

\[T = \pi_{\text{SSN}} (\sigma_{\text{age}>71} (\text{Dependents}))\]

Answer = \[R \bowtie \text{Dependents}\]
Complex RA Expressions

\[\pi_{\text{name}} \sigma_{\text{name}=\text{fred}} \pi_{\text{ssn}} \sigma_{\text{name}=\text{gizmo}} \pi_{\text{pid}} \]

Diagram:
- Person
- Purchase
- Person
- Product

Branches:
- buyer-ssn=ssn
- seller-ssn=ssn
- pid=pid
Example of Algebra Queries

Q1: Jobs of patients who have heart disease

\[\pi_{\text{job}}(\text{AnonJob} \bowtie (\sigma_{\text{disease}=\text{heart}} (\text{AnonPatient}))) \]
More Examples

Supplier(sno, sname, scity, sstate)
Part(pno, pname, psize, pcolor)
Supply(sno, pno, qty, price)

Q2: Name of supplier of parts with size greater than 10
\[\pi_{sname}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} (\text{Part})) \]

Q3: Name of supplier of red parts or parts with size greater than 10
\[\pi_{sname}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} (\text{Part}) \cup \sigma_{\text{pcolor}='red'} (\text{Part}))) \]
RA Expressions v.s. Programs

- An Algebra Expression is like a program
 - Several operations
 - Strictly specified order

- But Algebra expressions have limitations
RA and Transitive Closure

- Cannot compute “transitive closure”

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>Mary</td>
<td>Father</td>
</tr>
<tr>
<td>Mary</td>
<td>Joe</td>
<td>Cousin</td>
</tr>
<tr>
<td>Mary</td>
<td>Bill</td>
<td>Spouse</td>
</tr>
<tr>
<td>Nancy</td>
<td>Lou</td>
<td>Sister</td>
</tr>
</tbody>
</table>

- Find all direct and indirect relatives of Fred
- Cannot express in RA!!! Need to write Java program
Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
From SQL to RA

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and z.city = 'Seattle'
From SQL to RA

δ

π

x.name, z.name

σ

price > 100 and city = 'Seattle'

cid = cid

Customer

Product

Purchase

pid = pid
An Equivalent Expression

Query optimization = finding cheaper equivalent expressions
Operators on Bags

- Duplicate elimination δ
- Grouping γ
- Sorting τ
Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

T1, T2, T3 = temporary tables

\[T1(city, p, c) \]
\[T2(city, p, c) \]
\[T3(city, c) \]