Introduction to Database Systems
CSE 444

Lecture 1: Introduction
The Staff

- **Instructors:**
 - Wolfgang Gatterbauer (CSE 438)
 - Alexandra Meliou (CSE 444)
 - Email: cse444-instructors@cs
 - Office Hours: Wed 2pm – 3:50pm

- **TAs:**
 - Grad: Rita Sodt (rsodt@cs)
 - Office Hours: Thu 10:30am – 12pm CSE 216
 - Ugrad: Liem Dinh (liemdinh@cs)
 - Office Hours: Tue 1:30pm – 3pm CSE 220
Communications

- **Web page:** http://www.cs.washington.edu/444
 - Lectures will be available there
 - The mini-projects description will be there
 - Homeworks will be posted there

- **Mailing list**
 - Announcements, group discussions
 - You are already subscribed

- **Message board**
 - Great place to ask assignment-related questions
Textbook

- Main textbook:

 Database Systems: The Complete Book
 Hector Garcia Molina
 Jeffrey Ullman
 Jennifer Widom

- Other Texts:
 - Database Management Systems, Ramakrishnan, Gehrke
 - Foundations of Databases, Abiteboul, Hull, Vianu
 - Fundamentals of Database Systems, Elmasri, Navathe
 - Data on the Web, Abiteboul, Buneman, Suciu
Course Format

- Lectures: MWF, 12:30pm – 1:20pm
 - EEB 045

- Sections: Thu, 8:30am – 9:20am, 9:30am – 10:20am
 - EEB 025

- 4 Mini-Projects
- 3 Homework assignments

- Midterm and final exams
Grading

- Homeworks 30%
- Mini-projects 30%
- Midterm 15%
- Final 25%
Four Mini-Projects

- SQL
- SQL in Java
- Database tuning
- Parallel processing: MapReduce

Check course website for due dates
Three Homework Assignments

- Conceptual Design
- Transactions
- Query execution and optimization

Check course website for due dates
Exams

- Midterm: Wednesday, February 9, in class
- Final: Thursday, March 17, 8:30-10:20am, in class
Outline of Today’s Lecture

- Overview of a DBMS
- A DBMS through an example
- Course content
Database

- What is a database?
 - A collection of files storing related data

- Give examples of databases
 - Accounts database; payroll database; UW’s students database; Amazon’s products database; airline reservation database
Database Management System

- **What is a DBMS?**
 - A big C program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

- **Give examples of DBMSs**
 - DB2 (IBM), SQL Server (MS), Oracle, Sybase
 - MySQL, PostgreSQL, …
Market Shares

- From 2006 Gartner report:
 - Oracle: 47% market with $7.1BN in sales
 - IBM: 21% market with $3.2BN in sales
 - Microsoft: 17% market with $2.6BN in sales

- From 2008 Gartner study:

<table>
<thead>
<tr>
<th>Database</th>
<th>Currently Deployed</th>
<th>Plan to Deploy Next Year</th>
<th>Plan to Deploy but Not in the Next Year</th>
<th>No Plans to Deploy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle</td>
<td>70%</td>
<td>8%</td>
<td>9%</td>
<td>14%</td>
</tr>
<tr>
<td>SQL Server</td>
<td>68%</td>
<td>11%</td>
<td>6%</td>
<td>15%</td>
</tr>
<tr>
<td>MySQL</td>
<td>50%</td>
<td>13%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>DB2</td>
<td>39%</td>
<td>12%</td>
<td>11%</td>
<td>38%</td>
</tr>
<tr>
<td>Informix</td>
<td>18%</td>
<td>13%</td>
<td>14%</td>
<td>55%</td>
</tr>
<tr>
<td>Sybase ASE</td>
<td>15%</td>
<td>14%</td>
<td>14%</td>
<td>57%</td>
</tr>
<tr>
<td>Sybase IQ</td>
<td>14%</td>
<td>14%</td>
<td>13%</td>
<td>59%</td>
</tr>
<tr>
<td>Teradata</td>
<td>11%</td>
<td>15%</td>
<td>13%</td>
<td>61%</td>
</tr>
</tbody>
</table>
An Example

- The Internet Movie Database
 - http://www.imdb.com

- Entities:
 Actors (1.8M), Movies (1.5M), Directors, …

- Relationships:
 who played where, who directed what, …
Required Data Management Functionality

- Describe real-world entities in terms of stored data
- Create & persistently store large datasets
- Efficiently query & update
 - Must handle complex questions about data
 - Must handle sophisticated updates
 - Performance matters
- Change structure (e.g., add attributes)
- Concurrency control: enable simultaneous updates
- Crash recovery
- Security
DBMS Benefits

- Expensive to implement all these features inside the application
- DBMS provides these features (and more)
- DBMS simplifies application development
Back to Example: IMDB database

Actor

<table>
<thead>
<tr>
<th>id</th>
<th>fName</th>
<th>lName</th>
<th>gender</th>
</tr>
</thead>
</table>

Directors

<table>
<thead>
<tr>
<th>id</th>
<th>fName</th>
<th>lName</th>
</tr>
</thead>
</table>

Movie

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>year</th>
<th>rank</th>
</tr>
</thead>
</table>

Genre

<table>
<thead>
<tr>
<th>mid</th>
<th>genre</th>
</tr>
</thead>
</table>

Movie_Directors

<table>
<thead>
<tr>
<th>did</th>
<th>mid</th>
</tr>
</thead>
</table>

Casts

<table>
<thead>
<tr>
<th>pid</th>
<th>mid</th>
<th>role</th>
</tr>
</thead>
</table>
Tables

Actor:

<table>
<thead>
<tr>
<th>id</th>
<th>fName</th>
<th>lName</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>429073</td>
<td>Tom</td>
<td>Hanks</td>
<td>M</td>
</tr>
<tr>
<td>146871</td>
<td>Amy</td>
<td>Hanks</td>
<td>F</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Movie:

<table>
<thead>
<tr>
<th>id</th>
<th>Name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>561300</td>
<td>Toy Story</td>
<td>1995</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Cast:

<table>
<thead>
<tr>
<th>pid</th>
<th>mid</th>
<th>role</th>
</tr>
</thead>
<tbody>
<tr>
<td>429073</td>
<td>561300</td>
<td>Woody</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
SELECT *
FROM Actor
SELECT count(*)
FROM Actor

This is an aggregate query
SQL

```sql
SELECT * 
FROM Actor 
WHERE lName = 'Hanks'
```

This is a selection query
SELECT *
FROM Actor, Casts, Movie
WHERE lname='Hanks' and Actor.id = Casts.pid
and Casts.mid=Movie.id and Movie.year=1995

This query has selections and joins

1.8M actors, 11M casts, 1.5M movies;
How long do we expect it to take?
How Can We Evaluate the Query?

<table>
<thead>
<tr>
<th>Actor:</th>
<th>Cast:</th>
<th>Movie:</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>fName</td>
<td>lName</td>
</tr>
<tr>
<td>...</td>
<td>Hanks</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plan 1: [in class]

Plan 2: [in class]
Evaluating Tom Hanks

\(\sigma_{\text{Name}='Hanks'} \)

\(\sigma_{\text{year}=1995} \)

\(\sigma_{\text{Name}='Hanks'} \)

\(\sigma_{\text{year}=1995} \)
What an RDBMS Does Well (1/2)

- Indexes: on Actor.lName, on Movie.year
- Multiple implementations of joins
- Query optimization
 - Access path selection
 - Join order
 - Join implementation
- Statistics!
Now Let’s See Database Updates

Transfer $100 from account #4662 to #7199:

```
X = Read(Account, #4662);
X.amount = X.amount - 100;
Write(Account, #4662, X);

Y = Read(Account, #7199);
Y.amount = Y.amount + 100;
Write(Account, #7199, Y);
```

What is the problem?
What a RDBMS Does Well (2/2)

- Transactions!
- Recovery
- Concurrency control
Client/Server Architecture

- There is a single server that stores the database (called DBMS or RDBMS):
 - Usually a beefy system, e.g. IISQLSRV
 - But can be your own desktop…
 - … or a huge cluster running a parallel dbms
- Many clients run apps and connect to DBMS
 - E.g. Microsoft’s Management Studio
 - Or psql (for postgres)
 - More realistically some Java or C++ program
- Clients “talk” to server using JDBC protocol
What This Course Contains

- SQL
- Conceptual Design
- Transactions
- Database tuning and internals (very little)
- Query Optimization
- Distributed databases: a taste of MapReduce
- More stuff depending on time