Concurrency control and scheduling

CSE 444, summer 2010 — section 5 worksheet

July 22, 2010

Our notation for actions in a schedule:

- \(st_k \): transaction \(T_k \) begins
- \(r_k(X) \): \(T_k \) reads database element \(X \)
- \(w_k(X) \): \(T_k \) writes database element \(X \)
- \(com_k \): \(T_k \) commits

Other notation will be introduced as needed.

1 Two-phase locking

For each of the following schedules, suppose that we add one lock action (\(L_k(X) \)) and one unlock action (\(U_k(X) \)) for each database element that is used.

1. \(r_1(A), w_1(B) \)
2. \(r_2(A), w_2(A), w_2(B) \)

For each schedule, please answer the following questions:

1. Say when each lock and unlock action can appear relative to the other actions (both read/write and lock/unlock). Don’t worry about ensuring two-phase locking for now, but make sure that every element is locked before use and unlocked after use.

Solution:

For schedule 1:

- \(L_1(A) \) can only appear before the first action, \(r_1(A) \).
- \(U_1(A) \) can appear before \(w_1(B) \), or after both actions.
- \(L_1(B) \) can appear before either action, but not after both.
- \(U_1(B) \) can only appear after both actions.

For schedule 2:

- \(L_2(A) \) can only appear before the first action, \(r_2(A) \).
- \(U_2(A) \) can appear before \(w_2(B) \), or after all actions.
- \(L_2(B) \) can appear before any action, but not after all of them.
- \(U_2(B) \) can only appear after all actions.
2. How many possible schedules are allowed by the rules you just gave?

Solution:
We count the number of places each action can occur, and multiply all the counts together. In doing so we ignore differences caused by swapping adjacent lock and unlock actions.
Hence, for schedule 1, \((1)(2)(2)(1) = 4\) schedules are allowed, while for schedule 2, we can have \((1)(3)(2)(1) = 6\) schedules.

3. If we enforce two-phase locking, how do your rules change, and how many schedules are now allowed?

Solution:
For schedule 1, \(U_1(A)\) must follow both \(L_1(A)\) and \(L_1(B)\). Hence, if both \(L_1(B)\) and \(U_1(A)\) appear between the two actions, \(L_1(B)\) must appear first. However, we didn’t count swaps of adjacent locks and unlocks in our previous answer, so our answer does not change — we still have 4 schedules.
Schedule 2 is similar: again, \(U_2(A)\) must follow both \(L_2(A)\) and \(L_2(B)\). And again, this only matters when both \(L_2(B)\) and \(U_2(A)\) appear between the same two actions, in this case \(w_2(A)\) and \(w_2(B)\). Since this amounts to merely swapping two adjacent locks and unlocks, again the number of possible schedules does not change.
2 Timestamps

Each of the following schedules is presented to a timestamp-based scheduler. Assume that the read and write timestamps of each element start at 0 \((RT(X) = WT(X) = 0) \), and the commit bits for each element are set \((C(X) = 1) \). Please tell what happens as each schedule executes.

Correction: In the handout the commit bits were listed as initially set to 0 rather than 1; this has been corrected above.

1. \(st_1, st_2, st_3, r_1(A), r_2(B), w_1(C), r_3(C), w_2(B), w_3(A) \)

Solution:
The scheduler proceeds as follows:

- \(st_1, st_2, st_3 \): We assign timestamps in the order the transactions start; here I let \(TS(T_1) := 1 \), \(TS(T_2) := 2 \), and \(TS(T_3) := 3 \).
- \(r_1(A) \): OK because element \(A \) hasn’t yet been written \((WT(A) = 0) \). Sets \(RT(A) := (TS(T_1) = 1) \).
- \(r_2(B) \): OK because \(WT(B) = 0 \). Sets \(RT(B) := 2 \).
- \(w_1(C) \): OK because \(C \) hasn’t yet been read or written \((RT(C) = WT(C) = 0) \). Sets \(WT(C) := 1 \) and \(C(C) := 0 \).
- \(r_3(B) \): OK because \(WT(B) = 0 \). Sets \(RT(B) := 3 \).
- \(r_3(C) \): We have \((WT(C) = 1) \leq 3 \), but \(C(C) = 0 \) because \(T_1 \) has not yet committed or aborted. Delay \(T_3 \) until \(C(C) = 1 \) or \(T_1 \) aborts, then recheck timestamps and retry this action.
- \(w_2(B) \): We have \((RT(B) = 3) > 2 \), so allowing this write would cause an anomaly, \textit{awrite too late}. Delay \(T_3 \) until \(C(C) = 1 \) or \(T_1 \) aborts, then recheck timestamps and retry this action.
- \(w_3(A) \): Wait until and unless \(T_3 \) is unblocked and \(r_3(C) \) above succeeds. If \(T_3 \) is later aborted, then do not execute this action.

2. \(st_1, st_3, st_2, r_1(A), r_2(B), w_1(C), r_3(B), r_3(C), w_2(B), w_3(A) \)

Solution:
This schedule is the same as the one above, except now \(T_3 \) precedes \(T_2 \). The scheduler proceeds as follows:

- \(st_1, st_3, st_2 \): Let \(TS(T_1) := 100, TS(T_2) := 300 \), and \(TS(T_3) := 200 \).
- \(r_1(A) \): OK because \(WT(A) = 0 \). Sets \(RT(A) := 100 \).
- \(r_2(B) \): OK because \(WT(B) = 0 \). Sets \(RT(B) := 300 \).
- \(w_1(C) \): OK because \(RT(C) = WT(C) = 0 \). Sets \(WT(C) := 100 \) and \(C(C) := 0 \).
- \(r_3(B) \): OK because \(WT(B) = 0 \). Does not change \(RT(B) \) because \((RT(B) = 300) > 200 \).
- \(r_3(C) \): We have \((WT(C) = 100) \leq 200 \), but \(C(C) = 0 \) because \(T_1 \) has not yet committed or aborted. Delay \(T_3 \) until \(C(C) = 1 \) or \(T_1 \) aborts, then recheck timestamps and retry this action.
- \(w_2(B) \): OK because \((RT(B) = 300) \leq 300 \) and \((WT(B) = 0) \leq 300 \). Sets \(WT(B) := 300 \) and \(C(B) := 0 \).
- \(w_3(A) \): Wait until and unless \(T_3 \) is unblocked and \(r_3(C) \) above succeeds. If \(T_3 \) is later aborted, then do not execute this action.
3. \(s_{t_1}, s_{t_2}, s_{t_3}, r_1(A), r_2(B), r_2(C), r_3(B), \text{com}_2, w_3(B), w_3(C)\)

Solution:
The scheduler does the following:

- \(s_{t_1}, s_{t_2}, s_{t_3}\): Let \(TS(T_1) := 1\), \(TS(T_2) := 2\), and \(TS(T_3) := 3\).
- \(r_1(A)\): OK because \(WT(A) = 0\). Sets \(RT(A) := 1\).
- \(r_2(B)\): OK because \(WT(B) = 0\). Sets \(RT(B) := 2\).
- \(r_2(C)\): OK because \(WT(C) = 0\). Sets \(RT(C) := 2\).
- \(r_3(B)\): OK because \(WT(B) = 0\). Sets \(RT(B) := 3\).
- \(\text{com}_2\): Does nothing because \(T_2\) didn’t make any changes.
- \(w_3(B)\): OK because \((RT(B) = 3) \leq 3\) and \((WT(B) = 0) \leq 3\). Sets \(WT(B) := 3\) and \(C(B) := 0\).
- \(w_3(C)\): OK because \((RT(C) = 2) \leq 3\) and \((WT(C) = 0) \leq 3\). Sets \(WT(C) := 3\) and \(C(C) := 0\).

4. \(s_{t_1}, s_{t_2}, r_1(A), r_2(B), w_2(A), \text{com}_2, w_1(B)\)

Solution:
The scheduler does the following:

- \(s_{t_1}, s_{t_2}\): Let \(TS(T_1) := 1\) and \(TS(T_2) := 2\).
- \(r_1(A)\): OK because \(WT(A) = 0\). Sets \(RT(A) := 1\).
- \(r_2(B)\): OK because \(WT(B) = 0\). Sets \(RT(B) := 2\).
- \(w_2(A)\): OK because \((RT(A) = 1) \leq 2\) and \((WT(A) = 0) \leq 2\). Sets \(WT(A) := 2\) and \(C(A) := 0\).
- \(\text{com}_2\): Set \(C(A) := 1\) because \(T_2\) was the last transaction to write \(A\), as determined by \(WT(A)\).
- \(w_1(B)\): Rollback \(T_1\), because \((RT(B) = 2) > 1\).
The scheduler does the following:

Solution:
The scheduler does the following:

- \(st_1, \ st_3, \ st_2, \ r_1(A), \ r_2(B), \ r_3(B), \ w_3(A), \ w_2(B), \ com_3, \ w_1(A) \)

Solution:
The scheduler does the following:

- \(st_1, \ st_3, \ st_2 \): Let \(TS(T_1) := 100, \ TS(T_2) := 300, \) and \(TS(T_3) := 200 \).
- \(r_1(A) \): **OK** because \(WT(A) = 0 \). Sets \(RT(A) := 100 \).
- \(r_2(B) \): **OK** because \(WT(B) = 0 \). Sets \(RT(B) := 300 \).
- \(r_3(B) \): **OK** because \(WT(B) = 0 \). Does not change \(RT(B) \) because \((RT(B) = 300) > 200 \).
- \(w_3(A) \): **OK** because \((RT(A) = 100) \leq 200 \) and \((WT(A) = 0) \leq 200 \). Sets \(WT(A) := 200 \) and \(C(A) := 0 \).
- \(w_2(B) \): **OK** because \((RT(B) = 300) \leq 300 \) and \((WT(B) = 0) \leq 300 \). Sets \(WT(B) := 300 \) and \(C(B) := 0 \).
- \(com_3 \): Set \(C(A) := 1 \) because \(T_3 \) was the last transaction to write \(A \), as determined by \(WT(A) \).
- \(w_1(A) \): **Ignore this write**, because while \((RT(A) = 100) \leq 100 \), we have \((WT(A) = 200) > 100 \) and \(C(A) = 1 \), so we know that a later, committed transaction has already written to \(A \) (the Thomas write rule).

5. \(st_1, \ st_3, \ st_2, \ r_1(A), \ r_2(B), \ r_3(B), \ w_3(A), \ w_2(B), \ com_3, \ w_1(A) \)

Solution:
The scheduler does the following:

- \(st_1 \): Let \(TS(T_1) := 1 \).
- \(r_1(A) \): **OK** because \(WT(A) = 0 \). Sets \(RT(A) := 1 \).
- \(w_1(A) \): **OK** because \((RT(A) = 1) \leq 1 \) and \((WT(A) = 0) \leq 1 \). Sets \(WT(A) := 1 \) and \(C(A) := 0 \).
- \(st_2 \): Let \(TS(T_2) := 2 \).
- \(r_2(C) \): **OK** because \(WT(C) = 0 \). Sets \(RT(C) := 2 \).
- \(w_2(B) \): **OK** because \(RT(B) = WT(B) = 0 \). Sets \(WT(B) := 2 \) and \(C(A) := 0 \).
- \(r_2(A) \): We have \((WT(A) = 1) \leq 2 \), but \(C(A) = 0 \) because \(T_1 \) has not yet committed or aborted.
 Delay \(T_2 \) until \(C(A) = 1 \) or \(T_1 \) aborts, then recheck timestamps and retry this action.
- \(w_1(B) \): We have \((RT(B) = 0) \leq 1 \), but \((WT(A) = 2) > 1 \). We cannot ignore this write, however, because \(C(A) = 0 \) and \(T_2 \) was the last writer. We should *delay* \(T_1 \) until \(C(B) = 1 \) or \(T_2 \) aborts, then recheck timestamps and retry this action.

Notice that \(T_2 \) is blocked waiting for \(T_1 \) to commit or abort, but \(T_1 \) is also blocked, waiting for \(T_2 \) to commit or abort. This circular wait represents a deadlock between the two transactions, which must be broken externally.

6. \(st_1, \ r_1(A), \ w_1(A), \ st_2, \ r_2(C), \ w_2(B), \ r_2(A), \ w_1(B) \)

Solution:
The scheduler does the following:

- \(st_2 \): Let \(TS(T_1) := 1 \).
- \(r_1(A) \): **OK** because \(WT(A) = 0 \). Sets \(RT(A) := 1 \).
- \(w_1(A) \): **OK** because \((RT(A) = 1) \leq 1 \) and \((WT(A) = 0) \leq 1 \). Sets \(WT(A) := 1 \) and \(C(A) := 0 \).
- \(st_2 \): Let \(TS(T_2) := 2 \).
- \(r_2(C) \): **OK** because \(WT(C) = 0 \). Sets \(RT(C) := 2 \).
- \(w_2(B) \): **OK** because \(RT(B) = WT(B) = 0 \). Sets \(WT(B) := 2 \) and \(C(A) := 0 \).
- \(r_2(A) \): We have \((WT(A) = 1) \leq 2 \), but \(C(A) = 0 \) because \(T_1 \) has not yet committed or aborted.
 Delay \(T_2 \) until \(C(A) = 1 \) or \(T_1 \) aborts, then recheck timestamps and retry this action.
- \(w_1(B) \): We have \((RT(B) = 0) \leq 1 \), but \((WT(A) = 2) > 1 \). We cannot ignore this write, however, because \(C(A) = 0 \) and \(T_2 \) was the last writer. We should *delay* \(T_1 \) until \(C(B) = 1 \) or \(T_2 \) aborts, then recheck timestamps and retry this action.

Notice that \(T_2 \) is blocked waiting for \(T_1 \) to commit or abort, but \(T_1 \) is also blocked, waiting for \(T_2 \) to commit or abort. This circular wait represents a deadlock between the two transactions, which must be broken externally.
3 Multi-version timestamps

Tell what happens during the following schedules if we use a multi-version timestamp scheduler. What happens if the scheduler does not maintain multiple versions?

Correction: Commit actions have been added after the last action of each transaction; solutions changed accordingly.

1. \(st_1, st_2, st_3, st_4, w_1(A), com_1, w_2(A), w_3(A), com_3, r_2(A), com_2, r_4(A), com_4\)

 Solution:

 Each attempt to write to element \(A\) creates a new copy of \(A\), and the write occurs on the copy, rather than on the original copy of \(A\) (call it \(A_0\)), which is never written. Hence, we have copies \(A_1\), \(A_2\), and \(A_3\), representing the new data written by transactions \(T_1\), \(T_2\), and \(T_3\) respectively.

 The read attempts then read from the copy of \(A\) with the highest timestamp no greater than the timestamp of the read action’s transaction. Hence, \(r_2(A)\) will read \(A_2\), the most recent copy \(T_2\) can see, while \(r_4(A)\) reads \(A_3\), which was the most recent copy prior to \(T_4\) in the serialization order.

 If we did not use a multi-version scheduler, then the first read \(r_4(A)\) would succeed because no transaction with higher timestamp than \(T_4\) wrote \(A\). The second read \(r_2(A)\) would succeed, however, and would read the last value written by \(T_3\).

2. \(st_1, st_2, st_3, st_4, w_1(A), com_1, w_3(A), com_3, r_4(A), com_4, r_2(A), com_2\)

 Solution:

 The two write actions on element \(A\) create new versions \(A_1\) and \(A_3\), corresponding to the writes \(w_1(A)\) by \(T_1\), and \(w_3(A)\) by \(T_3\).

 Then, \(r_4(A)\) reads version \(A_3\), the version with the highest timestamp not greater than \(T_4\)’s, and similarly \(r_2(A)\) reads version \(A_1\).

 Without a multi-version scheduler, the first read \(r_4(A)\) would succeed because no transaction with higher timestamp than \(T_4\) wrote \(A\). However, the second read \(r_2(A)\) would fail and force \(T_2\) to rollback because the later \(T_3\) had already written \(A\).
3. st₁, st₂, st₃, st₄, w₁(A), com₁, w₄(A), com₄, r₃(A), com₃, w₂(A), com₂

Solution:
The first two actions on element A create new versions A₁ and A₄, corresponding to the writes w₁(A) by T₁, and w₄(A) by T₄. Then, r₃(A) reads version A₁, the version with the highest timestamp not greater than T₃’s.

However, the last action w₂(A) fails, causing T₂ to roll back. This is because if allowed, w₂(A) would create a version A₂, whose immediately previous version would be A₁. But we notice from A₁’s read timestamp that A₁ has already been read by T₃. Hence, if the write w₂(A) were allowed, then T₃ should have read the new version A₂ instead of A₁ which it actually read. This write is thus a write too late, and so must not be allowed.

Without a multi-version scheduler, the read r₃(A) would fail and roll back T₃, because A has already been written by the later transaction T₄. The last write w₂(A) would not fail, because the read r₃(A) did not happen. But this write would still be ignored, because the later T₄ has already committed a new value for A.
4 Validation

For the following schedules:

- \(R_k(X) \) means “transaction \(T_k \) starts, and its read set is the list of database elements \(X \),”
- \(V_k \) means “\(T_k \) tries to validate,” and
- \(W_k(x) \) means “\(T_k \) finished, and its write set was \(X \).”

Clarification: Remember that each transaction must inform the scheduler of both its read and write sets when it begins, or when it validates (at the latest). While the notation we use implies otherwise, and hence is slightly confusing, we use it to be consistent with your textbook’s notation.

Tell what happens when each schedule is processed by a validation-based scheduler.

1. \(R_1(A, B), R_2(B, C), R_3(C), V_1, V_2, V_3, W_1(A), W_2(B), W_3(C) \)

Solution:

\(T_1 \) is the first transaction to try to validate; as there are no other transactions to check against, \(T_1 \) obviously validates successfully.

Next, \(T_2 \) tries to validate. The only other validated transaction is \(T_1 \), and \(T_1 \) did not finish before \(T_2 \) started, so we need to check the read set of \(T_2 \) against the write set of \(T_1 \), to make sure that \(T_2 \) hasn’t read any element for which \(T_1 \) has written an as-yet-uncommitted new value. And indeed, we find that \(RS(T_2) \cap WS(T_1) = \emptyset \), so this check passes.

Not only did \(T_1 \) not finish before \(T_2 \) started, it still isn’t finished now, as we are validating \(T_2 \). Hence, we also need to check the write set of \(T_2 \) against the write set of \(T_1 \) to make sure that \(T_2 \), which is earlier in the serialization order, doesn’t overwrite any of \(T_2 \)’s changes to the database. This check also passes, as we find that \(WS(T_2) \cap WS(T_1) = \emptyset \). With both checks of \(T_2 \) passing, we can thus validate \(T_2 \) successfully.

Finally, \(T_3 \) tries to validate. The other validated transactions are \(T_1 \) and \(T_2 \), and both transactions were unfinished when \(T_3 \) started, so we check \(T_3 \)’s read set against both \(T_1 \) and \(T_2 \)’s write sets. No elements are in both \(T_3 \)’s read set and either of the other transactions’ write sets, so those checks pass. Because both \(T_1 \) and \(T_2 \) are still active now, as \(T_3 \) is being validated, we also check \(T_3 \)’s write set against the others’ write sets, and again with no intersection, the checks pass. Hence \(T_3 \) validates successfully.
2. $R_1(A, B), R_2(B, C), R_3(C), V_1, V_2, V_3, W_1(C), W_2(B), W_3(A)$

Solution:
This schedule has the same transactions and read sets as the previous one, but different write sets. As with the previous schedule, T_1 trivially validates because it’s first to try to validate.

Next, T_2 tries to validate. The only other validated transaction is T_1, and T_1 did not finish before T_2 started, so we need to check $RS(T_2)$ against $WS(T_1)$. We find that $RS(T_2) \cap WS(T_1) = \{C\}$ is nonempty, so the check fails, and T_2 cannot be validated. Having failed validation, T_2 is rolled back.

Finally, T_3 tries to validate. The only other validated transaction is still T_1, which was unfinished when T_3 started, so we check T_3’s read set against T_1’s write set. Once again, we find that the sets’ intersection is nonempty ($RS(T_3) \cap WS(T_1) = \{C\}$), so T_3 is not validated and is rolled back.

3. $R_1(A, B), R_2(B, C), R_3(C), V_1, V_2, V_3, W_1(A), W_2(C), W_3(B)$

Solution:
This schedule differs from the last two only in write sets. Once again, T_1 validates because it’s first to attempt it, so there are no other validated transactions to check against.

Next, T_2 tries to validate. The only other validated transaction is T_1, and T_1 did not finish before T_2 started, so we check that $RS(T_2) \cap WS(T_1) = \emptyset$. In addition, T_1 is still not finished now, so we check that $WS(T_2) \cap WS(T_1) = \emptyset$. Both checks pass, so T_2 validates.

Finally, T_3 tries to validate. The other validated transactions are T_1 and T_2. Both transactions were unfinished when T_3 started, so we check that $RS(T_3) \cap WS(T_1) = \emptyset$ and that $RS(T_3) \cap WS(T_2) = \emptyset$. The first check passes, but the second does not ($RS(T_3) \cap WS(T_2) = \{C\}$), so T_3 does not validate and gets rolled back.
4. \(R_1(A, B), R_2(B, C), V_1, R_3(C, D), V_3, W_1(C), V_2, W_2(A), W_3(D) \)

Solution:
As always, the first transaction to try to validate (\(T_1 \) in this case) succeeds, because there are no previously validated transactions to check against.

Next, \(T_3 \) tries to validate. \(T_1 \) is the only other validated transaction, so we need to check \(T_3 \) against \(T_1 \). Because \(T_1 \) did not finish before \(T_3 \) started, we check that \(RS(T_3) \cap WS(T_1) = \emptyset \), and because \(T_1 \) is still unfinished now, we also check that \(WS(T_3) \cap WS(T_1) = \emptyset \). The first condition does not hold (\(RS(T_3) \cap WS(T_1) = \{C\} \)), so \(T_3 \) does not validate and must be rolled back.

Finally, \(T_2 \) tries to validate. The only other validated transaction is \(T_1 \), and because it did not finish before \(T_2 \) started, we check that \(RS(T_2) \cap WS(T_1) = \emptyset \). (We don’t need to check that \(WS(T_2) \cap WS(T_1) = \emptyset \), because \(T_1 \) finished before now, the validation time for \(T_2 \).) However, element \(C \) is in both sets, so the check fails and \(T_2 \) fails to validate.