Lecture 22: Parallel Databases

Wednesday, May 26, 2010
Overview

- Parallel architectures and operators: Ch. 20.1
- Map-reduce: Ch. 20.2
- Semijoin reductions, full reducers: Ch. 20.4
 - We covered this a few lectures ago
Parallel v.s. Distributed Databases

• Parallel database system:
 – Improve performance through parallel implementation

• Distributed database system:
 – Data is stored across several sites, each site managed by a DBMS capable of running independently
Parallel DBMSs

• **Goal**
 – Improve performance by executing multiple operations in parallel

• **Key benefit**
 – Cheaper to scale than relying on a single increasingly more powerful processor

• **Key challenge**
 – Ensure overhead and contention do not kill performance
Performance Metrics for Parallel DBMSs

• **Speedup**
 – More processors \Rightarrow higher speed
 – Individual queries should run faster
 – Should do more transactions per second (TPS)

• **Scaleup**
 – More processors \Rightarrow can process more data
 – **Batch scaleup**
 • Same query on larger input data should take the same time
 – **Transaction scaleup**
 • N-times as many TPS on N-times larger database
 • But each transaction typically remains small
Linear v.s. Non-linear Speedup

Speedup

processors (=P)
Linear v.s. Non-linear Scaleup

Batch Scaleup

processors (=P) AND data size

×1 ×5 ×10 ×15
Challenges to Linear Speedup and Scaleup

• **Startup cost**
 – Cost of starting an operation on many processors

• **Interference**
 – Contention for resources between processors

• **Skew**
 – Slowest processor becomes the bottleneck
Architectures for Parallel Databases

- Shared memory
- Shared disk
- Shared nothing
Shared Memory

Interconnection Network

Global Shared Memory
Shared Disk

Interconnection Network
Shared Nothing

Interconnection Network

P

M

D

P

M

D

P

M

D

Dan Suciu -- 444 Spring 2010
Shared Nothing

• Most scalable architecture
 – Minimizes interference by minimizing resource sharing
 – Can use commodity hardware

• Also most difficult to program and manage

• Processor = server = node
• P = number of nodes

We will focus on shared nothing
Question

- What exactly can we parallelize in a parallel DB?
Taxonomy for Parallel Query Evaluation

• Inter-query parallelism
 – Each query runs on one processor

• Inter-operator parallelism
 – A query runs on multiple processors
 – An operator runs on one processor

• Intra-operator parallelism
 – An operator runs on multiple processors

We study only intra-operator parallelism: most scalable
Horizontal Data Partitioning

• Relation R split into P chunks R_0, \ldots, R_{P-1}, stored at the P nodes

• **Round robin**: tuple t_i to chunk $(i \mod P)$

• **Hash based partitioning on attribute A**:
 – Tuple t to chunk $h(t.A) \mod P$

• **Range based partitioning on attribute A**:
 – Tuple t to chunk i if $v_{i-1} < t.A < v_i$
Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v_1<A<v_2}(R)$

• On a conventional database: cost = $B(R)$

• Q: What is the cost on a parallel database with P processors?
 – Round robin
 – Hash partitioned
 – Range partitioned
Parallel Selection

• Q: What is the cost on a parallel database with P processors?

• A: \(B(R) / P \) in all cases

• However, different processors do the work:
 – Round robin: all servers do the work
 – Hash: one server for \(\sigma_{A=v}(R) \), all for \(\sigma_{v_1<A<v_2}(R) \)
 – Range: one server only
Data Partitioning Revisited

What are the pros and cons?

• Round robin
 – Good load balance but always needs to read all the data

• Hash based partitioning
 – Good load balance but works only for equality predicates and full scans

• Range based partitioning
 – Works well for range predicates but can suffer from data skew
Parallel Group By: \(\gamma_{A, \text{sum}(B)}(R) \)

- **Step 1:** server \(i \) partitions chunk \(R_i \) using a hash function \(h(t.A) \) mod \(P \): \(R_{i0}, R_{i1}, ..., R_{i,P-1} \)

- **Step 2:** server \(i \) sends partition \(R_{ij} \) to serve \(j \)

- **Step 3:** server \(j \) computes \(\gamma_{A, \text{sum}(B)} \) on \(R_{0j}, R_{1j}, ..., R_{P-1,j} \)
Cost of Parallel Group By

Recall conventional cost = 3B(R)

• Cost of Step 1: B(R)/P I/O operations
• Cost of Step 2: (P-1)/P B(R) blocks are sent
 – Network costs assumed to be much lower than I/O
• Cost of Step 3: 2 B(R)/P
 – Why?
 – When can we reduce it to 0?

Total = 3B(R) / P + communication costs
Parallel Join: $R \bowtie_{A=B} S$

• Step 1
 – For all servers in $[0,k]$, server i partitions chunk R_i using a hash function $h(t.A) \mod P$: $R_{i0}, R_{i1}, ..., R_{i,P-1}$
 – For all servers in $[k+1,P]$, server j partitions chunk S_j using a hash function $h(t.A) \mod P$: $S_{j0}, S_{j1}, ..., R_{j,P-1}$

• Step 2:
 – Server i sends partition R_{iu} to server u
 – Server j sends partition S_{ju} to server u

• Steps 3: Server u computes the join of R_{iu} with S_{ju}

Dan Suciu -- 444 Spring 2010
Cost of Parallel Join

• Step 1: \((B(R) + B(S))/P\)

• Step 2: 0
 – \((P-1)/P (B(R) + B(S))\) blocks are sent, but we assume network costs to be << disk I/O costs

• Step 3:
 – 0 if smaller table fits in main memory: \(B(S)/p \leq M\)
 – \(2(B(R)+B(S))/P\) otherwise
Parallel Dataflow Implementation

• Use relational operators unchanged

• Add special split and merge operators
 – Handle data routing, buffering, and flow control

• Example: exchange operator
 – Inserted between consecutive operators in the query plan
 – Can act as either a producer or consumer
 – Producer pulls data from operator and sends to n consumers
 • Producer acts as driver for operators below it in query plan
 – Consumer buffers input data from n producers and makes it available to operator through getNext interface
Map Reduce

• Google: paper published 2004
• Free variant: Hadoop

• Map-reduce = high-level programming model and implementation for large-scale parallel data processing
Data Model

• Files!

• A file = a bag of (key, value) pairs

• A map-reduce program:
 – Input: a bag of (input key, value) pairs
 – Output: a bag of (output key, value) pairs
Step 1: the MAP Phase

• User provides the MAP-function:
 – Input: one (input key, value)
 – Output: a bag of (intermediate key, value) pairs

• System applies the map function in parallel to all (input key, value) pairs in the input file
Step 2: the REDUCE Phase

• User provides the REDUCE function:
 – Input: intermediate key, and bag of values
 – Output: bag of output values

• System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function
Example

• Counting the number of occurrences of each word in a large collection of documents

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");
```

```java
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```
MAP

(k1,v1) -> (i1, w1)
(k2,v2) -> (i2, w2)
(k3,v3) -> (i3, w3)
......

REDUCE

......
Map = GROUP BY,
Reduce = Aggregate

R(documentKey, word)

```
SELECT word, sum(1) 
FROM R 
GROUP BY word
```
Implementation

• There is one master node
• Master partitions input file into M splits, by key
• Master assigns workers (=servers) to the M map tasks, keeps track of their progress
• Workers write their output to local disk, partition into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map workers’ local disks
Interesting Implementation Details

• Worker failure:
 – Master pings workers periodically,
 – If down then reassigns its splits to all other workers \(\rightarrow\) good load balance

• Choice of M and R:
 – Larger is better for load balancing
 – Limitation: master needs \(O(M \times R)\) memory
Interesting Implementation Details

Backup tasks:

• **Straggler** = a machine that takes unusually long time to complete one of the last tasks. Eg:
 – Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 – The cluster scheduler has scheduled other tasks on that machine

• Stragglers are a main reason for slowdown

• Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
Map-Reduce Summary

• Hides scheduling and parallelization details
• However, very limited queries
 – Difficult to write more complex tasks
 – Need multiple map-reduce operations
• Solution: PIG-Latin!

• Others:
 – Scope (MS): SQL! But proprietary...
 – DryadLINQ (MS): LINQ! But also proprietary...