Lecture 21: Query Optimization (3)

Friday, May 21, 2010
Announcement

• No Homework 4

• BUT PLEASE:
 – Study the remaining material
 – Do good job on Project 4
Outline

• Search space

• Algorithms for enumerating query plans

• Estimating the cost of a query plan
Computing the Cost of a Plan

• Collect statistical summaries of stored data

• Estimate size in a bottom-up fashion

• Estimate cost by using the estimated size
Statistics on Base Data

- Collected information for each relation
 - Number of tuples (cardinality)
 - Indexes, number of keys in the index
 - Number of physical pages, clustering info
 - Statistical information on attributes
 - Min value, max value, number distinct values
 - Histograms
 - Correlations between columns (hard)
- Collection approach: periodic, using sampling
Size Estimation Problem

\[S = \text{SELECT} \text{ list} \]
\[\text{FROM} \ R_1, \ldots, R_n \]
\[\text{WHERE} \ \text{cond}_1 \ \text{AND} \ \text{cond}_2 \ \text{AND} \ \ldots \ \text{AND} \ \text{cond}_k \]

Given \(T(R_1), T(R_2), \ldots, T(R_n) \)
Estimate \(T(S) \)

How can we do this? Note: doesn’t have to be exact.
Size Estimation Problem

\[S = \text{SELECT list} \]
\[\text{FROM } R_1, \ldots, R_n \]
\[\text{WHERE } \text{cond}_1 \text{ AND cond}_2 \text{ AND } \ldots \text{ AND cond}_k \]

Remark: \(T(S) \leq T(R_1) \times T(R_2) \times \ldots \times T(R_n) \)
Selectivity Factor

• Each condition $cond$ reduces the size by some factor called *selectivity factor*

• Assuming independence, multiply the selectivity factors
Example

R(A,B)
S(B,C)
T(C,D)

\[
\text{SELECT } * \\
\text{FROM } R, S, T \\
\text{WHERE } R.B = S.B \text{ and } S.C = T.C \text{ and } R.A < 40
\]

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output?
Rule of Thumb

• If selectivities are unknown, then: selectivity factor = 1/10
 [System R, 1979]
Selectivities from Statistics

• Condition is $A = c$ /* value selection on R */
 – Selectivity = $1/V(R,A)$

• Condition is $A < c$ /* range selection on R */
 – Selectivity = $(c - \text{Low}(R, A))/(\text{High}(R, A) - \text{Low}(R, A))T(R)$

• Condition is $A = B$ /* $R \bowtie_{A=B} S$ */
 – Selectivity = $1 / \max(V(R,A),V(S,A))$
 – (will explain next)
Selectivity of $R \bowtie_{A=B} S$

Assumptions:

- **Containment of values**: if $V(R,A) \leq V(S,B)$, then the set of A values of R is included in the set of B values of S

 - Note: this indeed holds when A is a foreign key in R, and B is a key in S

- **Preservation of values**: for any other attribute B, $V(R \bowtie_{A} S, B) = V(R, B)$ (or $V(S, B)$)
Selectivity of $R \bowtie_{A=B} S$

Assume $V(R,A) \leq V(S,B)$

• Each tuple t in R joins with $T(S)/V(S,B)$ tuple(s) in S

• Hence $T(R \bowtie_{A=B} S) = T(R) T(S) / V(S,B)$

In general: $T(R \bowtie_{A=B} S) = T(R) T(S) / \max(V(R,A),V(S,B))$
Size Estimation for Join

Example:

• $T(R) = 10000, \quad T(S) = 20000$
• $V(R,A) = 100, \quad V(S,B) = 200$
• How large is $R \bowtie_{A=B} S$?
Histograms

• Statistics on data maintained by the RDBMS
• Makes size estimation much more accurate (hence, cost estimations are more accurate)
Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Employee, age) = 50
min(age) = 19, max(age) = 68

\(\sigma_{age=48}(Employee) = ? \quad \sigma_{age>28 \text{ and } age<35}(Employee) = ? \)
Employee(ssn, name, age)

\[T(\text{Employee}) = 25000, \quad V(\text{Employee, age}) = 50 \]
\[\text{min}(\text{age}) = 19, \quad \text{max}(\text{age}) = 68 \]

\[\sigma_{\text{age}=48}(\text{Employee}) = ? \quad \sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) = ? \]

Estimate = \(\frac{25000}{50} = 500 \)

Estimate = \(25000 \times \frac{6}{60} = 2500 \)
Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Employee, age) = 50
min(age) = 19, max(age) = 68

\[\sigma_{age=48}(Employee) = ? \quad \sigma_{age>28 \text{ and } age<35}(Employee) = ? \]

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>
Histograms

Employee(ssn, name, age)

\[T(\text{Employee}) = 25000, \ V(\text{Employee}, \text{age}) = 50 \]
\[\text{min(age)} = 19, \ \text{max(age)} = 68 \]

\[\sigma_{\text{age}=48}(\text{Employee}) = ? \]
\[\sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) = ? \]

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

Estimate = 1200
Estimate = 2*80 + 5*500 = 2660
Types of Histograms

• How should we determine the bucket boundaries in a histogram?
Types of Histograms

• How should we determine the bucket boundaries in a histogram?

• Eq-Width
• Eq-Depth
• Compressed
Employee(ssn, name, age)

Histograms

Eq-width:

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

Eq-depth:

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>1800</td>
<td>2000</td>
<td>2100</td>
<td>2200</td>
<td>1900</td>
<td>1800</td>
</tr>
</tbody>
</table>

Compressed: store separately some highly frequent values: (48,1900)
Difficult Questions on Histograms

• Small number of buckets
 – Hundreds, or thousands, but not more
 – WHY ?

• *Not* updated during database update, but recomputed periodically
 – WHY ?

• Multidimensional histograms rarely used
 – WHY ?
Summary of Query Optimization

• Three parts:
 – search space, algorithms, size/cost estimation

• Ideal goal: find optimal plan. But
 – Impossible to estimate accurately
 – Impossible to search the entire space

• Goal of today’s optimizers:
 – Avoid very bad plans