Lecture 18: Query execution, optimization

Friday, May 14, 2010
Big Picture

Query processor:

• Query execution

• Query optimization
Review (1/2)

• Each operator implements this interface
 • open()
 – Initializes operator state
 – Sets parameters such as selection condition
 • \texttt{get_next()}
 – Operator invokes \texttt{get_next()} recursively on its inputs
 – Performs processing and produces an output tuple
 • close()
 – Cleans-up state
Review (2/2)

• Three algorithms for main memory join:

 – Nested loop join
 – Hash join
 – Merge join

If $|R| = m$ and $|S| = n$, what is the asymptotic complexity for computing $R \bowtie S$?
Other Main Memory Algorithms

- Grouping: $\gamma(R)$
 - Nested loop
 - Hash table
 - Sorting

- Duplicate elimination
 - *Exactly* the same algorithms (why?)

How do these algorithms work, and what are their complexities?
External Memory Algorithms

• Data is too large to fit in main memory

• Issue: disk access is 3-4 orders of magnitude slower than memory access

• Assumption: runtime dominated by # of disk I/O’s; will ignore the main memory part of the runtime
Cost Parameters

The cost of an operation = total number of I/Os
result assumed to be delivered in main memory

Cost parameters:

- $B(R) =$ number of blocks for relation R
- $T(R) =$ number of tuples in relation R
- $V(R, a) =$ number of distinct values of attribute a
- $M =$ size of main memory buffer pool, in blocks

Facts: (1) $B(R) \ll T(R)$:
(2) When a is a key, $V(R, a) = T(R)$
When a is not a key, $V(R, a) \ll T(R)$
Ad-hoc Convention

• We assume that the operator reads the data from disk
• We assume that the operator does not write the data back to disk (e.g.: pipelining)
• Thus:

Main memory join algorithms for $R \bowtie S$: Cost = $B(R) + B(S)$

Main memory grouping $\gamma(R)$: Cost = $B(R)$
Sequential Scan of a Table R

• When R is *clustered*
 – Blocks consists only of records from this table
 – $B(R) << T(R)$
 – Cost = $B(R)$

• When R is *unclustered*
 – Its records are placed on blocks with other tables
 – $B(R) \approx T(R)$
 – Cost = $T(R)$
Nested Loop Joins

- Tuple-based nested loop \(R \bowtie S \)

\[
\begin{align*}
\text{for each tuple } r \text{ in } R \text{ do} \\
&\quad \text{for each tuple } s \text{ in } S \text{ do} \\
&\quad \quad \text{if } r \text{ and } s \text{ join then output } (r,s)
\end{align*}
\]

- Cost: \(T(R) \times B(S) \) when \(S \) is clustered
- Cost: \(T(R) \times T(S) \) when \(S \) is unclustered
Examples

M = 4; R, S are clustered

• Example 1:
 – B(R) = 1000, T(R) = 10000
 – B(S) = 2, T(S) = 20
 – Cost = ?

• Example 2:
 – B(R) = 1000, T(R) = 10000
 – B(S) = 4, T(S) = 40
 – Cost = ?

Can you do better?
Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r,s)

Terminology alert: book calls S the inner relation
Block Nested-loop Join

Hash table for block of S (M-2 pages)

Input buffer for R Output buffer
Examples

M = 4; R, S are clustered

• Example 1:
 – B(R) = 1000, T(R) = 10000
 – B(S) = 2, T(S) = 20
 – Cost = B(S) + B(R) = 1002

• Example 2:
 – B(R) = 1000, T(R) = 10000
 – B(S) = 4, T(S) = 40
 – Cost = B(S) + 2B(R) = 2004

Note: T(R) and T(S) are irrelevant here.
Cost of Block Nested-loop Join

- Read S once: cost $B(S)$
- Outer loop runs $\frac{B(S)}{(M-2)}$ times, and each time need to read R: costs $B(S)B(R)/(M-2)$

Cost = $B(S) + B(S)B(R)/(M-2)$
Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

\[
\text{SELET } * \\
\text{FROM Movie} \\
\text{WHERE id = ‘12345’}
\]

\[
\text{SELET } * \\
\text{FROM Movie} \\
\text{WHERE year = ‘1995’}
\]

\[
\text{B(Movie)} = 10k \\
\text{T(Movie)} = 1M
\]

What is your estimate of the I/O cost?
Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a: cost $B(R)/V(R,a)$
- Unclustered index: cost $T(R)/V(R,a)$
Index Based Selection

B(R) = 10k
T(R) = 1M
V(R, a) = 100

cost of \(\sigma_{a=v}(R) = ? \)

• Example:

 - Table scan (assuming R is clustered):
 - \(B(R) = 10k \) I/Os
 - Index based selection:
 - If index is clustered: \(B(R)/V(R,a) = 100 \) I/Os
 - If index is unclustered: \(T(R)/V(R,a) = 10000 \) I/Os

Rule of thumb:
don’t build unclustered indexes when \(V(R,a) \) is small!
Index Based Join

- $R \bowtie S$
- Assume S has an index on the join attribute

\begin{verbatim}
for each tuple r in R do
 lookup the tuple(s) s in S using the index
 output (r,s)
\end{verbatim}
Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: \(B(R) + \frac{T(R)B(S)}{V(S,a)} \)
- If unclustered: \(B(R) + \frac{T(R)T(S)}{V(S,a)} \)
Operations on Very Large Tables

• Compute $R \bowtie S$ when each is larger than main memory

• Two methods:
 – Partitioned hash join (many variants)
 – Merge-join

• Similar for grouping
Partitioned Hash-based Algorithms

Idea:

• If \(B(R) > M \), then partition it into smaller files: \(R_1, R_2, R_3, \ldots, R_k \)

• Assuming \(B(R_1) = B(R_2) = \ldots = B(R_k) \), we have \(B(R_i) = B(R)/k \)

• Goal: each \(R_i \) should fit in main memory: \(B(R_i) \leq M \)

How big can \(k \) be?
Partitioned Hash Algorithms

- Idea: partition a relation R into M-1 buckets, on disk
- Each bucket has size approx. \(\frac{B(R)}{M-1} \approx \frac{B(R)}{M} \)

Assumption: \(\frac{B(R)}{M} \leq M \), i.e. \(B(R) \leq M^2 \)
Grouping

• $\gamma(R) = \text{grouping and aggregation}$
• Step 1. Partition R into buckets
• Step 2. Apply γ to each bucket (may read in main memory)

• Cost: $3B(R)$
• Assumption: $B(R) \leq M^2$
Partitioned Hash Join

\(R \bowtie S \)

• Step 1:
 – Hash S into M buckets
 – send all buckets to disk

• Step 2
 – Hash R into M buckets
 – Send all buckets to disk

• Step 3
 – Join every pair of buckets
Hash-Join

- Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i.

- Read in a partition of R, hash it using $h2$ ($\neq h!$). Scan matching partition of S, search for matches.
Partitioned Hash Join

- Cost: $3B(R) + 3B(S)$
- Assumption: $\min(B(R), B(S)) \leq M^2$
External Sorting

• Problem:
• Sort a file of size B with memory M
• Where we need this:
 – ORDER BY in SQL queries
 – Several physical operators
 – Bulk loading of B+-tree indexes.
• Will discuss only 2-pass sorting, when $B < M^2$
External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort
External Merge-Sort: Step 2

- Merge M – 1 runs into a new run
- Result: runs of length M (M – 1) \(\approx M^2\)

If \(B \leq M^2\) then we are done
Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) <= M^2
Grouping

Grouping: $\gamma_a, \text{sum}(b) (R)$

- Idea: do a two step merge sort, but change one of the steps

- Question in class: which step needs to be changed and how?

Cost = $3B(R)$
Assumption: $B(\delta(R)) \leq M^2$
Merge-Join

Join $R \Join S$

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join
Merge-Join

\[M_1 = \frac{B(R)}{M} \text{ runs for } R \]
\[M_2 = \frac{B(S)}{M} \text{ runs for } S \]

Merge-join \(M_1 + M_2 \) runs; need \(M_1 + M_2 \leq M \)
Two-Pass Algorithms Based on Sorting

Join $R \bowtie S$

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: $3B(R) + 3B(S)$
- Assumption: $B(R) + B(S) \leq M^2$
Summary of External Join Algorithms

- **Block Nested Loop:** \(B(S) + B(R) \times \frac{B(S)}{M} \)

- **Index Join:** \(B(R) + \frac{T(R)B(S)}{V(S,a)} \)

- **Partitioned Hash:** \(3B(R) + 3B(S); \)
 - \(\min(B(R), B(S)) \leq M^2 \)

- **Merge Join:** \(3B(R) + 3B(S) \)
 - \(B(R) + B(S) \leq M^2 \)