Lecture 24: Parallel Databases

Wednesday, November 24, 2010

Overview

- Parallel architectures and operators: Ch. 20.1
- Map-reduce: Ch. 20.2
- Semijoin reductions, full reducers: Ch. 20.4
 - We covered this a few lectures ago

Parallel v.s. Distributed Databases

- Parallel database system:
 - Improve performance through parallel implementation

- Distributed database system:
 - Data is stored across several sites, each site managed by a DBMS capable of running independently

Parallel DBMSs

- Goal
 - Improve performance by executing multiple operations in parallel

- Key benefit
 - Cheaper to scale than relying on a single increasingly more powerful processor

- Key challenge
 - Ensure overhead and contention do not kill performance

Performance Metrics for Parallel DBMSs

- Speedup
 - More processors ➔ higher speed
 - Individual queries should run faster
 - Should do more transactions per second (TPS)
 - Fixed problem size overall, vary # of processors ("strong scaling")

- Scaleup
 - More processors ➔ can process more data
 - Fixed problem size per processor, vary # of processors ("weak scaling")
 - Batch scaleup
 - Same query on larger input data should take the same time
 - Transaction scaleup
 - N-times as many TPS on N-times larger database
 - But each transaction typically remains small

Linear v.s. Non-linear Speedup

- Speedup
- # processors (=P)
Linear v.s. Non-linear Scaleup

Batch Scaleup

\(\times 1 \) \(\times 5 \) \(\times 10 \) \(\times 15 \)

processors (=P) AND data size

Challenges to Linear Speedup and Scaleup

- **Startup cost**
 - Cost of starting an operation on many processors

- **Interference**
 - Contention for resources between processors

- **Skew**
 - Slowest processor becomes the bottleneck

Architectures for Parallel Databases

- Shared memory
- Shared disk
- Shared nothing

Shared Memory

- Interconnection Network
- Global Shared Memory

Shared Disk

- Interconnection Network

Shared Nothing

- Interconnection Network
Shared Nothing

- Most scalable architecture
 - Minimizes interference by minimizing resource sharing
 - Can use commodity hardware
- Also most difficult to program and manage
- Processor = server = node
 - "Processor" ≠ core
- P = number of nodes

Question

- What exactly can we parallelize in a parallel DB?

Taxonomy for Parallel Query Evaluation

- Inter-query parallelism
 - Each query runs on one processor
- Inter-operator parallelism
 - A query runs on multiple processors
 - An operator runs on one processor
- Intra-operator parallelism
 - An operator runs on multiple processors

Horizontal Data Partitioning

- Relation R split into P chunks R₀, ..., Rₚ₋₁, stored at the P nodes
- Round robin: tuple tᵢ to chunk (i mod P)
- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 - Tuple t to chunk i if vᵢ₋₁ < t.A < vᵢ

Horizontal Data Partitioning

- All three choices are just special cases:
 - For each tuple, compute bin = f(t)
 - Different properties of the function f determine hash vs. range vs. round robin vs. anything

Parallel Selection

Compute σ₁₁⁺₁(R), or σ₁⁺₂⁺₂(R)

- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P processors?
 - Round robin
 - Hash partitioned
 - Range partitioned
Parallel Selection

• Q: What is the cost on a parallel database with P processors ?

• A: \(B(R) / P \) in all cases

• However, different processors do the work:
 – Round robin: all servers do the work
 – Hash: one server for \(\sigma_{sum}(R) \), all for \(\sigma_{B1 < A < B2}(R) \)
 – Range: one server only

Data Partitioning Revisited

What are the pros and cons ?

• Round robin
 – Good load balance but always needs to read all the data

• Hash based partitioning
 – Good load balance but works only for equality predicates and full scans

• Range based partitioning
 – Works well for range predicates but can suffer from data skew

Parallel Group By: \(\gamma_{A,\text{sum}(B)}(R) \)

• Step 1: server \(i \) partitions chunk \(R_i \) using a hash function \(h(t,A) \mod P: R_{i0}, R_{i1}, ..., R_{i,P-1} \)

• Step 2: server \(i \) sends partition \(R_{ij} \) to serve \(j \)

• Step 3: server \(j \) computes \(\gamma_{A,\text{sum}(B)} \) on \(R_{0j}, R_{1j}, ..., R_{P-1,j} \)

Cost of Parallel Group By

Recall conventional cost = \(3B(R) \)

• Cost of Step 1: \(B(R)/P \) I/O operations

• Cost of Step 2: \((P-1)/P \) blocks are sent
 – Network costs assumed to be much lower than I/O

• Cost of Step 3: \(2B(R)/P \)
 – Why ?
 – When can we reduce it to 0 ?

Total = \(3B(R) / P + \) communication costs

Parallel Group By: \(\gamma_{A,\text{sum}(B)}(R) \)

• Can we do better?

 Sum?
 Count?
 Avg?
 Max?
 Median?

Parallel Group By: \(\gamma_{A,\text{sum}(B)}(R) \)

• Sum(B) = \(\sum \) for \((B_0, ..., B_n) \)

• Count(B) = \(\sum \) for \(B_i \) + ... + Count(B_n)

• Max(B) = \(\max \) for \(B_0, B_1, ..., B_n \)

• \(\text{Median}(B) = \)
 – \(\text{distributive} \)
 – \(\text{algebraic} \)
 – \(\text{holistic} \)
Parallel Join: $R \bowtie_{A=B} S$

- Step 1:
 - For all servers in $[0,k]$, server i partitions chunk R_i using a hash function $h(t.A) \mod P$: $R_{i0}, R_{i1}, ..., R_{i,P-1}$
 - For all servers in $[k+1,P]$, server j partitions chunk S_j using a hash function $h(t.A) \mod P$: $S_{j0}, S_{j1}, ..., S_{j,P-1}$

- Step 2:
 - Server i sends partition R_iu to server u
 - Server j sends partition S_ju to server u

- Steps 3: Server u computes the join of R_{iu} with S_{ju}

Cost of Parallel Join

- Step 1: $(B(R) + B(S))/P$

- Step 2: 0
 - $(P-1)/P$ blocks are sent, but we assume network costs to be $<<$ disk I/O costs

- Step 3:
 - 0 if smaller table fits in main memory: $B(S)/p \leq M$
 - $4(B(R)+B(S))/P$ otherwise

Parallel Dataflow Implementation

- Use relational operators unchanged
- Add special split and merge operators
 - Handle data routing, buffering, and flow control
- Example: exchange operator
 - Inserted between consecutive operators in the query plan
 - Can act as either a producer or consumer
 - Producer pulls data from operator and sends to n consumers
 - Consumer buffers input data from n producers and makes it available to operator through getNext interface

Shared Nothing Parallel Databases

- Teradata
- Greenplum
- Netezza
- Aster Data Systems
- Datallegro
- Vertica
- MonetDB
 - Commercialized as Vectorwise

Example System: Teradata

Find all orders from today, along with the items ordered

```sql
SELECT * FROM Orders o, Lines i
WHERE o.item = i.item
AND o.date = today()
```
Example System: Teradata

```
select
  date = today()
join
scan Order o
hash
h(o.item)
AMP 4
AMP 5
AMP 6

select
  date = today()
join
scan Order o
hash
h(o.item)
AMP 1
AMP 2
AMP 3

select
  date = today()
join
scan Order o
hash
h(o.item)
AMP 4
AMP 5
AMP 6
```

Example System: Teradata

```
join
scan Item i
hash
h(i.item)
AMP 4
AMP 5
AMP 6

join
scan Item i
hash
h(i.item)
AMP 1
AMP 2
AMP 3

join
scan Item i
hash
h(i.item)
AMP 4
AMP 5
AMP 6
```

Example System: Teradata

```
contains all orders and all
lines where hash(item) = 1
contains all orders and all
lines where hash(item) = 2
contains all orders and all
lines where hash(item) = 3
```

MapReduce, Hadoop and Parallel Data Flow Systems

Parallel Join: $R \bowtie_X S$

```
Hash on X
Join each hash bucket
```

Parallel Group By: $\gamma_A \sum_B(R)$

```
Hash on A
sum(B) for each A-value
```
Parallel Duo–elim δ_R

Hash tuple

Remove duplicates

MapReduce Programming Model

- **Input & Output:** each a set of key/value pairs
- **Programmer specifies two functions:**
 - `map` in $(key, value)$ -> list$(key, intermediate_value)$
 - `reduce` out$(key, list(intermediate_value))$ -> list$(output_value)$

Example: Document Processing

Abridged Declaration of Independence

A Declaration by the Representatives of the United States of America in Congress Assembled

...
Map Reduce

- Google: [Dean 2004]
- Open source implementation: Hadoop
- Map-reduce = high-level programming model and implementation for large-scale parallel data processing

MapReduce Programming Model

- Input & Output: each a set of key/value pairs
- Programmer specifies two functions:
 - map (in_key, in_value) -> list(out_key, intermediate_value)
 - Processes input key/value pair
 - Produces set of intermediate pairs
 - reduce (out_key, list(intermediate_value)) -> list(out_value)
 - Combines all intermediate values for a particular key
 - Produces a set of merged output values (usually just one)

Inspired by primitives from functional programming languages such as Lisp, Scheme, and Haskell
Implementation

- There is one master node
- Master partitions input file into \(M \) splits, by key
- Master assigns workers (=servers) to the \(M \) map tasks, keeps track of their progress
- Workers write their output to local disk, partition into \(R \) regions
- Master assigns workers to the \(R \) reduce tasks
- Reduce workers read regions from the map workers’ local disks

Interesting Implementation Details

- Worker failure:
 - Master pings workers periodically,
 - If down then reassigns its splits to all other workers \(\rightarrow \) good load balance
- Choice of \(M \) and \(R \):
 - Larger is better for load balancing
 - Limitation: master needs \(O(M \times R) \) memory

Map-Reduce Summary

- Hides scheduling and parallelization details
- However, very limited queries
 - Difficult to write more complex tasks
 - Need multiple map-reduce operations
- Solution:
 - Use MapReduce as a runtime for higher level languages
 - Pig (Yahoo!), now apache project): RA-like operators
 - Hive (Facebook, now apache project): SQL
 - Scope (MS): SQL ! But proprietary...
 - DryadLINQ (MS): LINQ ! But also proprietary...

Interesting Implementation Details

Backup tasks:
- **Straggler** = a machine that takes unusually long time to complete one of the last tasks. Eg:
 - Bad disk forces frequent correctable errors (30MB/s \(\rightarrow \) 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

Isosurface Example
Isosurface Example

- Image of a 3D model with isosurface values.

Example: Isosurface Extraction

- Diagram showing the process of isosurface extraction.

Example: Rendering

- Diagram illustrating the rendering process.

Why is MapReduce Successful?

- **Easy**
 - Democratization of parallel computing
 - Just two serial functions
 - Time to first query: a few hours (contrast with parallel DB...)
- **Flexible**
 - Schema-free, “in situ” processing
 - “First, load your data into the database...”
 - “First, convert your images to bitmaps...”
 - “First, encode your 3D mesh as triangle soup...”
- **Fault-tolerance**

What’s wrong with MapReduce?

- Literally Map then Reduce and that’s it...
 - Realistic jobs have multiple steps
- What else?

Realistic Job = Directed Acyclic Graph

- Diagram showing a directed acyclic graph with inputs, outputs, channels, and processing vertices.
MapReduce Contemporaries

- Dryad (Microsoft)
 - Relational Algebra
- Pig (Yahoo)
 - Near Relational Algebra over MapReduce
- HIVE (Facebook)
 - SQL over MapReduce
- Cascading
 - Relational Algebra
- Clustera
 - U of Wisconsin
- Hbase
 - Indexing on HDFS

- RDBMS
 - Declarative query languages
 - Schemas
 - Logical Data Independence
 - Indexing
 - Algebraic Optimization
 - Caching/Materialized Views
 - ACID/Transactions

MapReduce vs RDBMS

- RDBMS
 - High Scalability
 - Fault-tolerance
 - "One-person deployment"

- MapReduce
 - Data Model
 - GPL
 - Typing (maybe)
 - Prog. Model
 - Workflow
 - Typing, provenance, scheduling, caching, task parallelism, reuse
 - Relations
 - Select, Project, Join, Aggregation, ...
 - Optimization, physical data independence, data parallelism, indexing
 - MapReduce
 - [(key, value)]
 - Map, Reduce
 - Massive data parallelism, fault tolerance
 - MS Dryad
 - IQueryable, IEnumerable
 - RA + Apply + Partitioning
 - Typing, massive data parallelism, fault tolerance
 - MPI
 - Arrays/Matrices
 - 70+ ops
 - Data parallelism, full control

Comparison

<table>
<thead>
<tr>
<th>Data Model</th>
<th>Prog. Model</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPL</td>
<td></td>
<td>Typing (maybe)</td>
</tr>
<tr>
<td>Workflow</td>
<td>dataflow</td>
<td>Typing, provenance, scheduling, caching, task parallelism, reuse</td>
</tr>
<tr>
<td>Relations</td>
<td>Select, Project, Join, Aggregation, ...</td>
<td>Optimization, physical data independence, data parallelism, indexing</td>
</tr>
<tr>
<td>MapReduce</td>
<td>[(key, value)]</td>
<td>Map, Reduce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massive data parallelism, fault tolerance</td>
</tr>
<tr>
<td>MS Dryad</td>
<td>IQueryable, IEnumerable</td>
<td>RA + Apply + Partitioning</td>
</tr>
<tr>
<td>MPI</td>
<td>Arrays/Matrices</td>
<td>70+ ops</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data parallelism, full control</td>
</tr>
</tbody>
</table>