Introduction to Database Systems
CSE 444

Lecture 5: E/R Diagrams
Outline

• **E/R diagrams**
 - Sec. 4.1- 4.4 [Old edition: Chapter 2]

• **From E/R diagrams to relations**
 - Sec. 4.5 and 4.6 [Old edition: Sec. 3.2 and 3.3]
Database Design

- Why do we need it?
 - Need a way to model real world entities in terms of relations
 - Not easy to go from real-world entities to a database schema

- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
 - How to achieve good designs

- Several formalisms exist
 - We discuss E/R diagrams
Database Design Process

Today
- Data Modeling
 - E/R diagrams

Next lecture
- Refinement
 - Relations
- SQL Tables
- Physical Schema
- Conceptual Schema
- Files
Conceptual Schema Design

Conceptual Model:

Relational Model: plus FD’s (FD = functional dependency)

Normalization: Eliminates anomalies
Entity / Relationship Diagrams

Objects → entities
Classes → entity sets

Attributes are like in ODL (ODL = Object Definition Language)

Relationships: like in ODL except
- first class citizens (not associated with classes)
- not necessarily binary

This is an entity set
Keys in E/R Diagrams

• Every entity set must have a key

![Diagram showing a product entity set with attributes name, category, and price]
What is a Relation?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of $A \times B$
- $A=\{1,2,3\}, \ B=\{a,b,c,d\}$
 - $A \times B = \{(1,a),(1,b), \ldots, (3,d)\}$
 - $R = \{(1,a), (1,c), (3,b)\}$

- **makes** is a subset of Product \times Company:

Magda Balazinska - CSE 444, Fall 2010
Multiplicity of E/R Relations

- one-one:

- many-one

- many-many
What does this say?
Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (how?)
Q: What does the arrow mean?

A: A given person buys a given product from at most one store
Arrows in Multiway Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product.
Q: How do we say that every person shops at at most one store?

A: Cannot. This is the best approximation. (Why only approximation?)
Converting Multi-way Relationships to Binary
3. Design Principles

What's wrong?

Moral: be faithful to the specifications of the app!
Design Principles: What’s Wrong?

Moral: pick the right kind of entities.
Design Principles: What’s Wrong?

Moral: don’t complicate life more than it already is.
From E/R Diagrams to Relational Schema

• Entity set \(\rightarrow \) relation
• Relationship \(\rightarrow \) relation
Entity Set to Relation

Product (name, category, price)

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>$19.99</td>
</tr>
</tbody>
</table>
Relationships to Relations

Makes\((product-name, \text{product-category}, \text{company-name}, \text{year})\)

<table>
<thead>
<tr>
<th>Product-name</th>
<th>Product-Category</th>
<th>Company-name</th>
<th>Starting-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>gizmoWorks</td>
<td>1963</td>
</tr>
</tbody>
</table>

(watch out for attribute name conflicts)
No need for **Makes**. Modify **Product**:

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
<th>StartYear</th>
<th>companyName</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>19.99</td>
<td>1963</td>
<td>gizmoWorks</td>
</tr>
</tbody>
</table>
Multi-way Relationships to Relations

Product
- name
- price

Purchase
- prodName
- sttName
- ssn

Person
- name
- ssn

Store
- name
- address

Purchase(prodName, stName, ssn)
Modeling Subclasses

Some objects in a class may be special
• define a new class
• better: define a subclass

Products

Software products

Educational products

So --- we define subclasses in E/R
Subclasses

Product

isa

Software Product

isa

Educational Product

name

category

price

platforms

Age Group

Magda Balazinska - CSE 444, Fall 2010
Understanding Subclasses

- Think in terms of records:
 - Product
 - SoftwareProduct
 - EducationalProduct
Subclasses to Relations

Other ways to convert are possible
See book sec 4.6 [Old ed: 3.3]

Magda Balazinska - CSE 444, Fall 2010
Difference between OO and E/R inheritance

• OO: classes are disjoint (same for Java, C++)
Difference between OO and E/R inheritance

- E/R: entity sets overlap
Difference between OO and E/R inheritance

No need for multiple inheritance in E/R

We have three entity sets, but four different kinds of objects.
Modeling Union Types With Subclasses

FurniturePiece

Person

Company

Say: each piece of furniture is owned either by a person, or by a company
Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company

Solution 1. Acceptable, imperfect (What’s wrong?)
Modeling Union Types with Subclasses

Solution 2: better, more laborious

isa

FurniturePiece

ownedBy

Person

Company

isa

Magda Balazinska - CSE 444, Fall 2010
Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples’ ages are between 0 and 150.
No formal way to specify multiple keys in E/R diagrams
Single Value Constraints

makes

v. s.

makes
Referential Integrity Constraints

Each product made by at most one company. Some products made by no company

Each product made by exactly one company.
Other Constraints

Product \(\xrightarrow{<100} \text{makes} \) Company

What does this mean?
Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Notice: we encountered this when converting multiway relationships to binary relationships.
Handling Weak Entity Sets

Convert to a relational schema

University(name)
Team(number,universityName,sport)
No need to represent affiliation separately