Introduction to Database Systems
CSE 444

Lecture 17: Relational Algebra
Outline

• Motivation and sets vs. bags
• Relational Algebra
• Translation from SQL to the Relational Algebra

• Read Sections 2.4, 5.1, and 5.2
 – [Old edition: 5.1 through 5.4]
 – These book sections go over relational operators
The WHAT and the HOW

• In SQL, we write **WHAT** we want to get form the data

• The database system needs to figure out **HOW** to get the data we want

• The passage from **WHAT** to **HOW** goes through the **Relational Algebra**
SQL = WHAT

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

```
SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
  x.price > 100 and z.city = 'Seattle'
```

It’s clear WHAT we want, unclear HOW to get it
Relational Algebra = HOW

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Temporary tables T1, T2, ...

Final answer

δ

Π

$\sigma_{\text{price}>100 \text{ and city}='Seattle'}$

Π

x.name, z.name

T4(name, name)

T3(...)

T1(pid, name, price, pid, cid, store)

Customer

Product

Purchase

cid = cid

pid = pid
Relational Algebra = HOW

The order is now clearly specified:
• Iterate over PRODUCT…
• …join with PURCHASE…
• …join with CUSTOMER…
• …select tuples with Price>100 and City=‘Seattle’…
• …eliminate duplicates…
• …and that’s the final answer!
Sets v.s. Bags

- Sets: \{a,b,c\}, \{a,d,e,f\}, \{\}\ldots
- Bags: \{a, a, b, c\}, \{b, b, b, b, b\}, \ldots

Relational Algebra has two flavors:
- Over sets: theoretically elegant but limited
- Over bags: needed for SQL queries + more efficient
 - Example: Compute average price of all products

We discuss set semantics
- We mention bag semantics only where needed
Outline

• Motivation and sets v.s. bags
• Relational Algebra
• Translation from SQL to the Relational Algebra

• Read Sections 2.4, 5.1, and 5.2
 – [Old edition: 5.1 through 5.4]
 – These book sections go over relational operators
Relational Algebra

• **Query language** associated with relational model

• **Queries specified in an operational manner**
 – A query gives a step-by-step procedure

• **Relational operators**
 – Take one or two relation instances as argument
 – Return one relation instance as result
 – Easy to **compose** into *relational algebra expressions*
Relational Algebra (1/3)

Five basic operators:

• **Union** \((\cup)\) and **Set difference** \((-\))

• **Selection**: \(\sigma_{\text{condition}}(S)\)
 - Condition is Boolean combination \((\wedge, \vee)\) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: <, \(\leq\), =, \(\neq\), \(\geq\), or >

• **Projection**: \(\pi_{\text{list-of-attributes}}(S)\)

• **Cross-product or cartesian product** \((\times)\)
Relational Algebra (2/3)

Derived or auxiliary operators:

- **Intersection** (\cap), **Division** (R/S)
- **Join**: $R \bowtie_\theta S = \sigma_\theta(R \times S)$
- **Variations of joins**
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- **Rename** $\rho_{B_1,\ldots,B_n}(S)$
Extensions for bags

- **Duplicate elimination**: δ
- **Group by**: γ [Same symbol as aggregation]
 - Partitions tuples of a relation into “groups”
- **Sorting**: τ

Other extensions

- **Aggregation**: γ (min, max, sum, average, count)
Union and Difference

- $R_1 \cup R_2$
- Example:
 - ActiveEmployees \cup RetiredEmployees

- $R_1 - R_2$
- Example:
 - AllEmployees – RetiredEmployees

Be careful when applying to bags!
What about Intersection?

- It is a derived operator
- \(R_1 \cap R_2 = R_1 - (R_1 - R_2) \)
- Also expressed as a join (will see later)
- Example
 - UnionizedEmployees \(\cap \) RetiredEmployees
Selection

• Returns all tuples that satisfy a condition
• Notation: $\sigma_c(R)$
• Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\sigma_{\text{name} = \text{"Smith"}}$ (Employee)
• The condition c can be
 - Boolean combination (\land, \lor) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: $<$, \leq, $=$, \neq, \geq, or $>$
\[\sigma_{\text{Salary} > 40000} (\text{Employee}) \]

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>500000</td>
</tr>
</tbody>
</table>

CSE 444 - Summer 2009
Projection

- Eliminates columns
- Notation: $\Pi_{A_1,\ldots,A_n}(R)$
- Example: project social-security number and names:
 - $\Pi_{SSN, Name}(Employee)$
 - Output schema: Answer(SSN, Name)

Semantics differs over set or over bags
\[\Pi_{\text{Name}, \text{Salary}} (\text{Employee}) \]

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>John</td>
<td>600000</td>
</tr>
</tbody>
</table>

Set semantics: duplicate elimination automatic
<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>5423341</td>
<td>John</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>John</td>
<td>200000</td>
</tr>
</tbody>
</table>

$\Pi_{\text{Name}, \text{Salary}}(\text{Employee})$

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>John</td>
<td>600000</td>
</tr>
<tr>
<td>John</td>
<td>200000</td>
</tr>
</tbody>
</table>

Bag semantics: no duplicate elimination; need explicit δ
Selection & Projection Examples

Patient

<table>
<thead>
<tr>
<th>no</th>
<th>name</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p1</td>
<td>98125</td>
<td>flu</td>
</tr>
<tr>
<td>2</td>
<td>p2</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>3</td>
<td>p3</td>
<td>98120</td>
<td>lung</td>
</tr>
<tr>
<td>4</td>
<td>p4</td>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

$$\sigma_{\text{disease='heart'}}(\text{Patient})$$

<table>
<thead>
<tr>
<th>no</th>
<th>name</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>p2</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>4</td>
<td>p4</td>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

$$\pi_{\text{zip, disease}}(\text{Patient})$$

<table>
<thead>
<tr>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>98125</td>
<td>flu</td>
</tr>
<tr>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>98120</td>
<td>lung</td>
</tr>
<tr>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

$$\pi_{\text{zip}}(\sigma_{\text{disease='heart'}}(\text{Patient}))$$

<table>
<thead>
<tr>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>98120</td>
</tr>
<tr>
<td>98125</td>
</tr>
</tbody>
</table>
Cartesian Product

• Each tuple in R1 with each tuple in R2
• Notation: $R1 \times R2$
• Example:
 – Employee \times Dependents
• Rare in practice; mainly used to express joins
Cartesian Product Example

Employee

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>999999999</td>
</tr>
<tr>
<td>Tony</td>
<td>777777777</td>
</tr>
</tbody>
</table>

Dependents

<table>
<thead>
<tr>
<th>EmployeeSSN</th>
<th>Dname</th>
</tr>
</thead>
<tbody>
<tr>
<td>999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>

Employee x Dependents

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>EmployeeSSN</th>
<th>Dname</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>999999999</td>
<td>999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>John</td>
<td>999999999</td>
<td>777777777</td>
<td>Joe</td>
</tr>
<tr>
<td>Tony</td>
<td>777777777</td>
<td>999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>Tony</td>
<td>777777777</td>
<td>777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>
Renaming

• Changes the schema, not the instance
• Notation: \(\rho_{B_1,\ldots,B_n}(R) \)
• Example:
 - \(\rho_{\text{LastName}, \text{SocSocNo}}(\text{Employee}) \)
 - Output schema:
 \(\text{Answer}((\text{LastName}, \text{SocSocNo}) \)
Renaming Example

<table>
<thead>
<tr>
<th>Employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Tony</td>
</tr>
</tbody>
</table>

$\rho_{LastName, SocSocNo} (Employee)$

<table>
<thead>
<tr>
<th>LastName</th>
<th>SocSocNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
</tr>
</tbody>
</table>
Different Types of Join

- **Theta-join**: $R \bowtie_\theta S = \sigma_\theta(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection θ

- **Equijoin**: $R \bowtie_\theta S = \pi_A(\sigma_\theta(R \times S))$
 - Join condition θ consists only of equalities
 - Projection π_A drops all redundant attributes
 - By far most used join in practice

- **Natural join**: $R \bowtie S = \pi_A(\sigma_\theta(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S
Theta-Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

$\leftarrow P.\text{age} = J.\text{age} \land P.\text{zip} = J.\text{zip} \land P.\text{age} < 50$

<table>
<thead>
<tr>
<th>P.\text{age}</th>
<th>P.\text{zip}</th>
<th>disease</th>
<th>J.\text{job}</th>
<th>J.\text{age}</th>
<th>J.\text{zip}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>
Equijoin Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

\[P \bowtie_{P.\text{age}=J.\text{age}} J \]

<table>
<thead>
<tr>
<th>age</th>
<th>P.zip</th>
<th>disease</th>
<th>job</th>
<th>J.zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
<td>98125</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
<td>98120</td>
</tr>
</tbody>
</table>
Natural Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

P \natural J

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
<th>job</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
</tr>
</tbody>
</table>
So Which Join Is It?

- When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context.
More Joins

• **Outer join**
 – Include tuples with no matches in the output
 – Use NULL values for missing attributes

• **Variants**
 – Left outer join
 – Right outer join
 – Full outer join
Outer Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
<tr>
<td>33</td>
<td>98120</td>
<td>lung</td>
</tr>
</tbody>
</table>

AnnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

P □ V

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
<th>job</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
</tr>
<tr>
<td>33</td>
<td>98120</td>
<td>lung</td>
<td>null</td>
</tr>
</tbody>
</table>
Semijoin

• \(R \bowtie S = \Pi_{A_1, \ldots, A_n} (R \bowtie S) \)
• Where \(A_1, \ldots, A_n \) are the attributes in \(R \)
• Example:
 – Employee \(\bowtie \) Dependents
Semijoins in Distributed Databases

- Semijoins are used in distributed databases

\[
\text{Employee} \Join_{\text{ssn}=\text{ssn}} (\sigma_{\text{age}>71} (\text{Dependents}))
\]

\[
R = \text{Employee} \Join T
\]

\[
T = \Pi_{\text{SSN}} (\sigma_{\text{age}>71} (\text{Dependents}))
\]

Answer = \text{R} \Join \text{Dependents}
Complex RA Expressions

\[\Pi_{\text{name}} \]

\[\bigtriangleup \text{buyer-ssn=ssn} \]

\[\bigtriangleup \text{seller-ssn=ssn} \]

\[\Pi_{\text{ssn}} \]

\[\sigma_{\text{name=fred}} \]

\[\sigma_{\text{name=gizmo}} \]

\[\Pi_{\text{pid}} \]

Person Purchase Person Product
Example of Algebra Queries

Q1: Jobs of patients who have heart disease

\[\pi_{job}(\text{AnnonJob} \bowtie (\sigma_{\text{disease} = 'heart'} (\text{AnonPatient}))) \]
More Examples

Supplier(sno, sname, scity, sstate)
Part(pno, pname, psize, pcolor)
Supply(sno, pno, qty, price)

Q2: Name of supplier of parts with size greater than 10
\[\pi_{sname}(Supplier \bowtie Supply \bowtie (\sigma_{psize>10}(Part)) \]

Q3: Name of supplier of red parts or parts with size greater than 10
\[\pi_{sname}(Supplier \bowtie Supply \bowtie (\sigma_{psize>10}(Part) \cup \sigma_{pcolor='red'}(Part))) \]
RA Expressions vs. Programs

• An Algebra Expression is like a program
 – Several operations
 – Strictly specified order

• But Algebra expressions have limitations
RA and Transitive Closure

• Cannot compute “transitive closure”

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>Mary</td>
<td>Father</td>
</tr>
<tr>
<td>Mary</td>
<td>Joe</td>
<td>Cousin</td>
</tr>
<tr>
<td>Mary</td>
<td>Bill</td>
<td>Spouse</td>
</tr>
<tr>
<td>Nancy</td>
<td>Lou</td>
<td>Sister</td>
</tr>
</tbody>
</table>

• Find all direct and indirect relatives of Fred
• Cannot express in RA !!! Need to write Java program
Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra

- Read Sections 2.4, 5.1, and 5.2
 - [Old edition: 5.1 through 5.4]
 - These book sections go over relational operators
From SQL to RA

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and z.city = ‘Seattle’
From SQL to RA

\[\delta \]
\[\Pi \]
\[\sigma \]
\[\text{price} > 100 \text{ and city} = 'Seattle' \]
\[\text{cid} = \text{cid} \]
\[\text{pid} = \text{pid} \]

Customer

Product

Purchase
An Equivalent Expression

Query optimization = finding cheaper equivalent expressions

Product

Purchase

Customer
Operators on Bags

- Duplicate elimination δ
- Grouping γ
- Sorting τ
Logical Query Plan

```
SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100
```

T1, T2, T3 = temporary tables

T3(city, c)

T2(city, p, c)

T1(city, p, c)

sales(product, city, price)

T1, T2, T3 = temporary tables
Non-monontone Queries
(at home !)

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

```
SELECT DISTINCT z.store
FROM Customer z
WHERE z.city='Seattle' AND
not exists (select *
    from Product x, Purchase y
    where x.pid= y.pid
    and y.cid = z.cid
    and x.price < 100)
```