Introduction to Database Systems
CSE 444

Lecture 5: E/R Diagrams
Outline

• E/R diagrams
 – Sec. 4.1- 4.4 [Old edition: Chapter 2]

• From E/R diagrams to relations
 – Sec. 4.5 and 4.6 [Old edition: Sec. 3.2 and 3.3]
Database Design

• Why do we need it?
 – Need a way to model real world entities in terms of relations
 – Not easy to go from real-world entities to a database schema

• Consider issues such as:
 – What entities to model
 – How entities are related
 – What constraints exist in the domain
 – How to achieve good designs

• Several formalisms exist
 – We discuss E/R diagrams
Database Design Process

Today
Data Modeling

Next lecture
Refinement
SQL Tables
Files

E/R diagrams
Relations
Conceptual Schema
Physical Schema
Conceptual Schema Design

Conceptual Model:

Relational Model: plus FD’s (FD = functional dependency)

Normalization: Eliminates anomalies
Entity / Relationship Diagrams

Objects → entities
Classes → entity sets

Attributes are like in ODL (ODL = Object Definition Language)

Relationships: like in ODL except
- first class citizens (not associated with classes)
- not necessarily binary

This is an entity set

Product

address

buys

CSE 444 - Summer 2009
Keys in E/R Diagrams

• Every entity set must have a key
What is a Relation?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of $A \times B$

- $A = \{1, 2, 3\}$, $B = \{a, b, c, d\}$,
 - $A \times B = \{(1, a), (1, b), \ldots, (3, d)\}$
 - $R = \{(1, a), (1, c), (3, b)\}$

- **makes** is a subset of $Product \times Company$:

```
Product          makes          Company
```

CSE 444 - Summer 2009
Multiplicity of E/R Relations

- **one-one:**
 - 1
 - 2
 - 3
 - a
 - b
 - c
 - d

- **many-one**
 - 1
 - 2
 - 3
 - a
 - b
 - c
 - d

- **many-many**
 - 1
 - 2
 - 3
 - a
 - b
 - c
 - d
Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (how?)
Q: What does the arrow mean?

A: A given person buys a given product from at most one store.
Arrows in Multiway Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product.
Q: How do we say that every person shops at at most one store?

A: Cannot. This is the best approximation. (Why only approximation?)
Converting Multi-way Relationships to Binary

- **Purchase**
 - **ProductOf**
 - **Product**
 - **StoreOf**
 - **Store**
 - **BuyerOf**
 - **Person**
3. Design Principles

What’s wrong?

Moral: be faithful to the specifications of the app!
Design Principles: What’s Wrong?

Moral: pick the right kind of entities.

Product

Purchase

Store

personName

personAddr

date
Design Principles: What’s Wrong?

Moral: don’t complicate life more than it already is.
From E/R Diagrams to Relational Schema

• Entity set \rightarrow relation
• Relationship \rightarrow relation
Product (name, category, price)

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>$19.99</td>
</tr>
</tbody>
</table>
Makes

<table>
<thead>
<tr>
<th>Product-name</th>
<th>Product-Category</th>
<th>Company-name</th>
<th>Starting-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>gizmoWorks</td>
<td>1963</td>
</tr>
</tbody>
</table>

(watch out for attribute name conflicts)
No need for **Makes**. Modify **Product**:

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
<th>StartYear</th>
<th>companyName</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>19.99</td>
<td>1963</td>
<td>gizmoWorks</td>
</tr>
</tbody>
</table>
Multi-way Relationships to Relations

- **Product**
 - name
 - price

- **Person**
 - ssn
 - name

- **Store**
 - name
 - address

- **Purchase**
 - Purchase(prodName, stName, ssn)
Modeling Subclasses

Some objects in a class may be special
 • define a new class
 • better: define a subclass

So --- we define subclasses in E/R
Subclasses

Product

Software Product

Educational Product

CSE 444 - Summer 2009
Understanding Subclasses

• Think in terms of records:
 – Product
 – SoftwareProduct
 – EducationalProduct
Subclasses to Relations

Other ways to convert are possible
See book sec 4.6 [Old ed: 3.3]
Difference between OO and E/R inheritance

- OO: classes are disjoint (same for Java, C++)
Difference between OO and E/R inheritance

- E/R: entity sets overlap
Difference between OO and E/R inheritance

No need for multiple inheritance in E/R

We have three entity sets, but four different kinds of objects.
Modeling Union Types With Subclasses

FurniturePiece

Person
Company

Say: each piece of furniture is owned either by a person, or by a company
Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company

Solution 1. Acceptable, imperfect (What’s wrong?)
Modeling Union Types with Subclasses

Solution 2: better, more laborious

CSE 444 - Summer 2009
Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples’ ages are between 0 and 150.
Keys in E/R Diagrams

Underline:

No formal way to specify multiple keys in E/R diagrams
Single Value Constraints

makes

v. s.

makes
Referential Integrity Constraints

Each product made by at most one company. Some products made by no company

Each product made by \textit{exactly} one company.
Other Constraints

What does this mean?
Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Notice: we encountered this when converting multiway relationships to binary relationships.
Handling Weak Entity Sets

Convert to a relational schema

```
University(name)
Team(number,universityNameName,sport)
No need to represent affiliation separately
```