Introduction to Database Systems
CSE 444

Lecture 17: Relational Algebra
Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra

- Read Sections 2.4, 5.1, and 5.2
 - [Old edition: 5.1 through 5.4]
 - These book sections go over relational operators
The WHAT and the HOW

• In SQL, we write **WHAT** we want to get form the data

• The database system needs to figure out **HOW** to get the data we want

• The passage from **WHAT** to **HOW** goes through the **Relational Algebra**
SQL = WHAT

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

```
SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
  x.price > 100 and z.city = 'Seattle'
```

It’s clear WHAT we want, unclear HOW to get it
Relational Algebra = HOW

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Temporary tables T1, T2, . . .

Product(pid, name, price, pid, cid, store)

Purchase(pid, cid, store)

Customer(cid, name, city)

\(\delta \) (price > 100 and city = ‘Seattle’)

\(\Pi \) x.name, z.name

\(\sigma \) (price > 100 and city = ‘Seattle’)

T2(. . .)

T3(. . .)

T4(name, name)

Final answer
Relational Algebra = HOW

The order is now clearly specified:

• Iterate over PRODUCT…
• …join with PURCHASE…
• …join with CUSTOMER…
• …select tuples with Price>100 and City=‘Seattle’…
• …eliminate duplicates…
• …and that’s the final answer!
Sets v.s. Bags

- Sets: \{a,b,c\}, \{a,d,e,f\}, \{\}\ldots
- Bags: \{a, a, b, c\}, \{b, b, b, b, b\}, \ldots

Relational Algebra has two flavors:
- **Over sets**: theoretically elegant but limited
- **Over bags**: needed for SQL queries + more efficient
 - Example: Compute average price of all products

We discuss set semantics
- We mention bag semantics only where needed
Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra

- Read Sections 2.4, 5.1, and 5.2
 - [Old edition: 5.1 through 5.4]
 - These book sections go over relational operators
Relational Algebra

- **Query language** associated with relational model

- **Queries specified in an operational manner**
 - A query gives a step-by-step procedure

- **Relational operators**
 - Take one or two relation instances as argument
 - Return one relation instance as result
 - Easy to compose into relational algebra expressions
Relational Algebra (1/3)

Five basic operators:

- **Union** (\cup) and **Set difference** (\setminus)
- **Selection**: $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (\land, \lor) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: $<$, \leq, $=$, \neq, \geq, or $>$
- **Projection**: $\pi_{\text{list-of-attributes}}(S)$
- **Cross-product** or **cartesian product** (\times)
Relational Algebra (2/3)

Derived or auxiliary operators:
- **Intersection** (∩), **Division** (R/S)
- **Join**: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- **Variations of joins**
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- **Rename** $\rho_{B_1, \ldots, B_n}(S)$
Relational Algebra (3/3)

Extensions for bags

- **Duplicate elimination**: δ
- **Group by**: γ [Same symbol as aggregation]
 - Partitions tuples of a relation into “groups”
- **Sorting**: τ

Other extensions

- **Aggregation**: γ (min, max, sum, average, count)
Union and Difference

• R1 \(\cup\) R2
 • Example:
 – ActiveEmployees \(\cup\) RetiredEmployees

• R1 – R2
 • Example:
 – AllEmployees – RetiredEmployees

Be careful when applying to bags!
What about Intersection?

• It is a derived operator
• \(R1 \cap R2 = R1 - (R1 - R2) \)
• Also expressed as a join (will see later)
• Example
 – UnionizedEmployees \(\cap \) RetiredEmployees
Relational Algebra (1/3)

Five basic operators:

- **Union** (\cup) and **Set difference** ($-$)
- **Selection**: $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (\land, \lor) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: $<$, \leq, $=$, \neq, \geq, or $>$
- **Projection**: $\pi_{\text{list-of-attributes}}(S)$
- **Cross-product** or **cartesian product** (\times)
Selection

- Returns all tuples that satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $\sigma_{\text{Salary} \ > \ 40000}$ (Employee)
 - $\sigma_{\text{name} \ = \ "Smith"}$ (Employee)
- The condition c can be
 - Boolean combination (\land, \lor) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: $<$, \leq, $=$, \neq, \geq, or $>$
\[\sigma_{\text{Salary}>40000} (\text{Employee}) \]

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>500000</td>
</tr>
</tbody>
</table>
Projection

- Eliminates columns
- Notation: $\Pi_{A_1,\ldots,A_n}(R)$
- Example: project social-security number and names:
 - $\Pi_{\text{SSN}, \text{Name}}(\text{Employee})$
 - Output schema: Answer(\text{SSN}, \text{Name})

Semantics differs over set or over bags
\[\Pi_{\text{Name,Salary}} (\text{Employee}) \]

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>5423341</td>
<td>John</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>John</td>
<td>200000</td>
</tr>
</tbody>
</table>

Set semantics: duplicate elimination automatic
\[
\Pi_{\text{Name,Salary}} (\text{Employee})
\]

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>5423341</td>
<td>John</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>John</td>
<td>200000</td>
</tr>
</tbody>
</table>

Bag semantics: no duplicate elimination; need explicit \(\delta \)
Selection & Projection Examples

Patient

<table>
<thead>
<tr>
<th>no</th>
<th>name</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p1</td>
<td>98125</td>
<td>flu</td>
</tr>
<tr>
<td>2</td>
<td>p2</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>3</td>
<td>p3</td>
<td>98120</td>
<td>lung</td>
</tr>
<tr>
<td>4</td>
<td>p4</td>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

\[\sigma_{\text{disease} = \text{‘heart’}}(\text{Patient}) \]

<table>
<thead>
<tr>
<th>no</th>
<th>name</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>p2</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>4</td>
<td>p4</td>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

\[\pi_{\text{zip,disease}}(\text{Patient}) \]

<table>
<thead>
<tr>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>98125</td>
<td>flu</td>
</tr>
<tr>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>98120</td>
<td>lung</td>
</tr>
<tr>
<td>98120</td>
<td>heart</td>
</tr>
</tbody>
</table>

\[\pi_{\text{zip}}(\sigma_{\text{disease} = \text{‘heart’}}(\text{Patient})) \]

<table>
<thead>
<tr>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>98120</td>
</tr>
<tr>
<td>98125</td>
</tr>
</tbody>
</table>
Relational Algebra (1/3)

Five basic operators:

• **Union** \((\bigcup)\) and **Set difference** \((-\)\)

• **Selection**: \(\sigma_{\text{condition}}(S)\)
 - Condition is Boolean combination \((\land, \lor)\) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: <, \(\leq\), =, \(\neq\), \(\geq\), or >

• **Projection**: \(\pi_{\text{list-of-attributes}}(S)\)

• **Cross-product** or **cartesian product** \((\times)\)
Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: $R_1 \times R_2$
- Example:
 - Employee \times Dependents
- Rare in practice; mainly used to express joins
Cartesian Product Example

Employee

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
</tr>
</tbody>
</table>

Dependents

<table>
<thead>
<tr>
<th>EmployeeSSN</th>
<th>Dname</th>
</tr>
</thead>
<tbody>
<tr>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>7777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>

Employee x Dependents

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>EmployeeSSN</th>
<th>Dname</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>John</td>
<td>9999999999</td>
<td>7777777777</td>
<td>Joe</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
<td>7777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>
Relational Algebra (2/3)

Derived or auxiliary operators:

- **Intersection** (\cap), **Division** (R/S)
- **Join**: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- **Variations of joins**
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- **Rename** $\rho_{B_1, \ldots, B_n}(S)$
Renaming

• Changes the schema, not the instance
• Notation: $\rho_{B_1,\ldots,B_n}(R)$
• Example:
 – $\rho_{\text{LastName}, \text{SocSocNo}}(\text{Employee})$
 – Output schema: $\text{Answer(LastName, SocSocNo)}$
Renaming Example

<table>
<thead>
<tr>
<th>Employee</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SSN</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>9999999999</td>
<td></td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
<td></td>
</tr>
</tbody>
</table>

\[\rho_{LastName, SocSocNo} (Employee) \]

<table>
<thead>
<tr>
<th>LastName</th>
<th>SocSocNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
</tr>
</tbody>
</table>
Relational Algebra (2/3)

Derived or auxiliary operators:

- **Intersection** (\cap), **Division** (R/S)
- **Join**: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- **Variations of joins**
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- **Rename** $\rho_{B_1, \ldots, B_n}(S)$
Different Types of Join

• **Theta-join**: $R \bowtie_\theta S = \sigma_\theta(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection θ

• **Equijoin**: $R \bowtie_\theta S = \pi_A(\sigma_\theta(R \times S))$
 - Join condition θ consists only of equalities
 - Projection π_A drops all redundant attributes

• **Natural join**: $R \bowtie S = \pi_A(\sigma_\theta(R \times S))$
 - Equijoin
 - Equality on **all** fields with same name in R and in S
Theta-Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

\[
\text{P} \Join_{\text{P.age}=\text{J.age} \land \text{P.zip}=\text{J.zip} \land \text{P.age} < 50} \text{J}
\]

<table>
<thead>
<tr>
<th>P.age</th>
<th>P.zip</th>
<th>disease</th>
<th>job</th>
<th>J.age</th>
<th>J.zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>
Equijoin Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

$P \bowtie_{P.age = J.age} J$

<table>
<thead>
<tr>
<th>age</th>
<th>P.zip</th>
<th>disease</th>
<th>job</th>
<th>J.zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
<td>98125</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
<td>98120</td>
</tr>
</tbody>
</table>
Natural Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

$P \bowtie J$

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
<th>job</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
</tr>
</tbody>
</table>
So Which Join Is It?

• When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context.
More Joins

• **Outer join**
 – Include tuples with no matches in the output
 – Use NULL values for missing attributes

• **Variants**
 – Left outer join
 – Right outer join
 – Full outer join
Outer Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
<tr>
<td>33</td>
<td>98120</td>
<td>lung</td>
</tr>
</tbody>
</table>

AnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

P ⋈ V

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
<th>job</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>lawyer</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>cashier</td>
</tr>
<tr>
<td>33</td>
<td>98120</td>
<td>lung</td>
<td>null</td>
</tr>
</tbody>
</table>
Semijoin

- $R \bowtie S = \Pi_{A_1, \ldots, A_n} (R \bowtie S)$
- Where A_1, \ldots, A_n are the attributes in R
- Example:
 - Employee \bowtie Dependents
Semijoins in Distributed Databases

- Semijoins are used in distributed databases

\[
\text{Employee} \times_{\text{ssn}=\text{ssn}} (\sigma_{\text{age}>71} (\text{Dependents}))
\]

\[
R = \text{Employee} \bowtie T
\]

\[
T = \Pi_{\text{SSN}} (\sigma_{\text{age}>71} (\text{Dependents}))
\]

Answer = \[
R \bowtie \text{Dependents}
\]
Complex RA Expressions

$$\Pi_{\text{name}}$$

$$\sigma_{\text{name}=\text{fred}}$$

$$\sigma_{\text{name}=\text{gizmo}}$$

$$\Pi_{\text{ssn}}$$

$$\Pi_{\text{pid}}$$

$$\Pi_{\text{ssn}}$$

$$\Pi_{\text{pid}}$$

Person

Purchase

Person

Product
Example of Algebra Queries

Q1: Jobs of patients who have heart disease
\[\pi_{\text{job}}(\text{AnnonJob} \Join \sigma_{\text{disease}='\text{heart}'}(\text{AnonPatient})) \]
More Examples

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10
\[\pi_{sname}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{psize>10}(\text{Part})) \]

Q3: Name of supplier of red parts or parts with size greater than 10
\[\pi_{sname}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{psize>10}(\text{Part}) \cup \sigma_{pcolor='red'}(\text{Part}))) \]
RA Expressions v.s. Programs

• An Algebra Expression is like a program
 – Several operations
 – Strictly specified order

• But Algebra expressions have limitations
RA and Transitive Closure

• Cannot compute “transitive closure”

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>Mary</td>
<td>Father</td>
</tr>
<tr>
<td>Mary</td>
<td>Joe</td>
<td>Cousin</td>
</tr>
<tr>
<td>Mary</td>
<td>Bill</td>
<td>Spouse</td>
</tr>
<tr>
<td>Nancy</td>
<td>Lou</td>
<td>Sister</td>
</tr>
</tbody>
</table>

• Find all direct and indirect relatives of Fred
• Cannot express in RA !!! Need to write Java program
Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra

- Read Sections 2.4, 5.1, and 5.2
 - [Old edition: 5.1 through 5.4]
 - These book sections go over relational operators
From SQL to RA

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’
From SQL to RA

\[\delta \]
\[\Pi \ x.\text{name},z.\text{name} \]
\[\sigma \ \text{price}\text{>100 and city}='\text{Seattle}' \]
\[\bowtie \ \text{cid}\text{=cid} \]
\[\bowtie \ \text{pid}\text{=pid} \]

Customer
Product
Purchase
An Equivalent Expression

Query optimization = finding cheaper equivalent expressions

Diagram:
- \(\delta \)
- \(\Pi \) \(x . name , z . name \)
- \(\sigma \) \(cid = cid \)
- \(\sigma \) \(pid = pid \)
- \(\sigma \) \(price > 100 \)
- Product
- Purchase
- Customer

\(\sigma \) \(city = 'Seattle' \)
Operators on Bags

- Duplicate elimination δ
- Grouping γ
- Sorting τ
Logical Query Plan

\[
\begin{align*}
\text{SELECT} & \quad \text{city, count(\star)} \\
\text{FROM} & \quad \text{sales} \\
\text{GROUP BY} & \quad \text{city} \\
\text{HAVING} & \quad \text{sum(price)} > 100
\end{align*}
\]

\[
T1, T2, T3 = \text{temporary tables}
\]

\[
\begin{align*}
\Delta & \quad \text{city,} \quad \text{sum(price)} \rightarrow p, \quad \text{count(\star)} \rightarrow c \\
\Pi & \quad \text{city, c} \\
\sigma & \quad p > 100 \\
\end{align*}
\]

\[
T1(\text{city, p, c}) \\
T2(\text{city, p, c}) \\
T3(\text{city, c})
\]

sales(product, city, price)
Non-monontone Queries
(at home !)

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

```
SELECT DISTINCT z.store
FROM Customer z
WHERE z.city='Seattle' AND
    not exists (select *
                from Product x, Purchase y
                where x.pid= y.pid
                    and y.cid = z.cid
                    and x.price < 100)
```