Introduction to Database Systems
CSE 444

Lecture 5: E/R Diagrams
Outline

• E/R diagrams
 – Sec. 4.1- 4.4 [Old edition: Chapter 2]

• From E/R diagrams to relations
 – Sec. 4.5 and 4.6 [Old edition: Sec. 3.2 and 3.3]
Database Design

• Why do we need it?
 – Need a way to model real world entities in terms of relations
 – Not easy to go from real-world entities to a database schema

• Consider issues such as:
 – What entities to model
 – How entities are related
 – What constraints exist in the domain
 – How to achieve good designs

• Several formalisms exists
 – We discuss E/R diagrams
Database Design Process

Today
Data Modeling

E/R diagrams

Next lecture
Refinement

Conceptual Schema

Physical Schema

SQL Tables

Files

Relations
Conceptual Schema Design

Conceptual Model:

Relational Model: plus FD’s (FD = functional dependency)

Normalization: Eliminates anomalies
Entity / Relationship Diagrams

Objects → entities
Classes → entity sets

Attributes are like in ODL
(ODL = Object Definition Language)

Relationships: like in ODL except
- first class citizens (not associated with classes)
- not necessarily binary

This is an entity set
Keys in E/R Diagrams

• Every entity set must have a key
What is a Relation?

• A mathematical definition:
 – if A, B are sets, then a relation R is a subset of $A \times B$

• $A=\{1,2,3\}$, $B=\{a,b,c,d\}$,
 $A \times B = \{(1,a),(1,b), \ldots, (3,d)\}$
 $R = \{(1,a), (1,c), (3,b)\}$

• makes is a subset of Product × Company:
Multiplicity of E/R Relations

- one-one:
 ![Diagram of one-one relationship]

- many-one
 ![Diagram of many-one relationship]

- many-many
 ![Diagram of many-many relationship]
What does this say?

- Person
 - address
 - name
 - ssn

- Product
 - name
 - category
 - price

- Company
 - name
 - stockprice

- makes
 - Product
 - Company

- buys
 - Person
 - Product

- employs
 - Person
 - Company
Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (how?)
Q: What does the arrow mean?

A: A given person buys a given product from at most one store.
Arrows in Multiway Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product.
Q: How do we say that every person shops at at most one store?

A: Cannot. This is the best approximation. (Why only approximation?)
Converting Multi-way Relationships to Binary

- **date**
- **Purchase**
 - **ProductOf**
 - **Product**
 - **StoreOf**
 - **Store**
 - **BuyerOf**
 - **Person**
3. Design Principles

What’s wrong?

- Product
- Purchase
- Person
- Country
- President
- Person

Moral: be faithful to the specifications of the app!
Design Principles: What’s Wrong?

Moral: pick the right kind of entities.
Design Principles: What’s Wrong?

Moral: don’t complicate life more than it already is.
From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation
Entity Set to Relation

Product

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>$19.99</td>
</tr>
</tbody>
</table>
Relationships to Relations

Makes(product-name, product-category, company-name, year)

<table>
<thead>
<tr>
<th>Product-name</th>
<th>Product-Category</th>
<th>Company-name</th>
<th>Starting-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>gizmoWorks</td>
<td>1963</td>
</tr>
</tbody>
</table>

(watch out for attribute name conflicts)
No need for **Makes**. Modify **Product**:

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
<th>StartYear</th>
<th>companyName</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>19.99</td>
<td>1963</td>
<td>gizmoWorks</td>
</tr>
</tbody>
</table>
Multi-way Relationships to Relations

Product
 - name
 - price

Purchase
 - Purchase(prodName, stName, ssn)

Person
 - ssn
 - name

Store
 - name
 - address
Modeling Subclasses

Some objects in a class may be special
 • define a new class
 • better: define a subclass

Products

 Software products
 Educational products

So --- we define subclasses in E/R
Subclasses

Product

- name
- category
- price

isa

Software Product

isa

Educational Product

platforms

Age Group

CSE 444 - Spring 2009
Understanding Subclasses

- Think in terms of records:
 - Product
 - SoftwareProduct
 - EducationalProduct
Subclasses to Relations

Product

name
price
category

isa

Software Product

platforms

isa

Educational Product

platforms

Age Group

Other ways to convert are possible
See book sec 4.6 [Old ed: 3.3]

Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>

Sw.Product

<table>
<thead>
<tr>
<th>Name</th>
<th>platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>unix</td>
</tr>
</tbody>
</table>

Ed.Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>toddler</td>
</tr>
<tr>
<td>Toy</td>
<td>retired</td>
</tr>
</tbody>
</table>
Difference between OO and E/R inheritance

- OO: classes are disjoint (same for Java, C++)

Diagram:
- Product
 - p1
 - p2
 - p3
- SoftwareProduct
 - sp1
 - sp2
- EducationalProduct
 - ep1
 - ep2
 - ep3
Difference between OO and E/R inheritance

- E/R: entity sets overlap
Difference between OO and E/R inheritance

No need for multiple inheritance in E/R

We have three entity sets, but four different kinds of objects.
Modeling UnionTypes With Subclasses

Say: each piece of furniture is owned either by a person, or by a company.
Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company

Solution 1. Acceptable, imperfect (What’s wrong?)
Modeling Union Types with Subclasses

Solution 2: better, more laborious
Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples’ ages are between 0 and 150.
Keys in E/R Diagrams

No formal way to specify multiple keys in E/R diagrams

Underline:
Single Value Constraints

makes

v. s.

makes
Referential Integrity Constraints

Each product made by at most one company.
Some products made by no company

Each product made by \textit{exactly} one company.
Other Constraints

What does this mean?
Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Notice: we encountered this when converting multiway relationships to binary relationships
Handling Weak Entity Sets

Convert to a relational schema

University(name)
Team(number,universityName,sport)
No need to represent affiliation separately