Section 3

CSE 444
Introduction to Databases
Announcements

• Project 1 was due yesterday (10/14/2009)
• Homework 1 was released, due 10/28/2009
From Last time...

• DELETE FROM Table WHERE column = value
 – Don’t forget the WHERE clause
 – Otherwise this empties the content of the table
Today

• E/R Diagrams (Brief overview)
 – English requirements to E/R Diagram
 – E/R diagram to Tables

• BCNF
 – FDs, Closure
 – Examples
E/R basics

• Know and symbols
 – Entity
 – Attributes
 – Relationship
 – Arrows

• ISA
 – Difference from OOP in C++/Java
E/R (English requirements to diagram)

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects
E/R (English requirements to diagram)

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke
E/R (English requirements to diagram)

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke
E/R (English requirements to diagram)

- Each project is worked on by one or more professors
- Professors can work on multiple projects

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke
E/R (English requirements to diagram)

• Each project is worked on by one or more professors
• Professors can work on multiple projects

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke
Convert to tables

- Professor(ssn, age, rank, specialty)
- Project(pid, sponsor, start_date, end_date, budget)
- Work_in(ssn, pid)
- Manages(ssn, pid)

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke
Professor

- ssn
- age
- $rank$
- $specialty$

Project

- pid
- $sponsor$
- $start_date$
- end_date
- $budget$

Work_in

- ssn
- pid

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke
CREATE TABLE Professor (
 ssn INT PRIMARY KEY,
 age INT,
 urank VARCHAR(30),
 specialty VARCHAR(30)
);

CREATE TABLE Project (
 pid INT PRIMARY KEY,
 sponsor INT,
 start_date DATE,
 end_date DATE,
 budget FLOAT,
 ssn INT REFERENCES Professor(ssn)
);

CREATE TABLE Work_In (
 ssn INT REFERENCES Professor(ssn),
 pid INT REFERENCES Project(pid),
 PRIMARY KEY (ssn, pid)
);
Data Anomalies

• Redundancy is Bad, why?

• Redundancy

• Update

• Delete
Functional Dependencies

- Dependencies for this relation:
 - \(A \rightarrow B \)
 - \(A \rightarrow D \)
 - \(B,C \rightarrow E,F \)

- Do they all hold in this instance of the relation \(R \)?

<table>
<thead>
<tr>
<th>(R)</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>(E)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
<td>e1</td>
<td>f1</td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c2</td>
<td>d1</td>
<td>e2</td>
<td>f3</td>
<td></td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c2</td>
<td>d3</td>
<td>e2</td>
<td>f3</td>
<td></td>
</tr>
<tr>
<td>a3</td>
<td>b2</td>
<td>c3</td>
<td>d4</td>
<td>e3</td>
<td>f2</td>
<td></td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c3</td>
<td>d3</td>
<td>e4</td>
<td>f4</td>
<td></td>
</tr>
<tr>
<td>a4</td>
<td>b1</td>
<td>c1</td>
<td>d5</td>
<td>e1</td>
<td>f1</td>
<td></td>
</tr>
</tbody>
</table>

- How would you go by finding these in an unknown table?

- Functional dependencies are specified by the database programmer based on the intended meaning of the attributes.
Keys

• Keys, what?
 – Superkey
 – Key
BCNF

• What is it?
BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: X ≠X⁺ ≠ [all attributes]

if (not found) then “R is in BCNF”

let Y = X⁺ - X
let Z = [all attributes] - X⁺

decompose R into R1(X ∪ Y) and R2(X ∪ Z)
continue to decompose recursively R1 and R2
A table $R(A, B, C, D, E)$: Example 1

Consider the following FDs:

- $CD \rightarrow E$ \hspace{1cm} BAD
- $D \rightarrow B$ \hspace{1cm} BAD
- $A \rightarrow CD$

Which one are the bad dependences?

- $CD^+ = BCDE$
- $D^+ = BD$
- $A^+ = ABCDE$

Note: a set of attributes X is a superkey if $X^+ = ABCDE$
A table $R(A,B,C,D,E)$: Example 1

Consider the following FDs:
- $CD \rightarrow E$ BAD
- $D \rightarrow B$ BAD
- $A \rightarrow CD$

Note: a set of attributes X is a superkey if $X^+ = ABCDE$
A table $R(A,B,C,D)$: Example 2

Consider the following FDs:

- $C \rightarrow D$, $C^+ = AD$ BAD
- $C \rightarrow A$, $C^+ = AD$ BAD
- $B \rightarrow C$, $B^+ = ABCD$

Note: a set of attributes X is a superkey if $X^+ = ABCDE$
A table $S(A,B,C,D,E)$: Example 3

Consider the following FDs:

- $AB \rightarrow C$, $AB^+ = ABCD$ BAD
- $DE \rightarrow C$, $DE^+ = CDE$ BAD
- $B \rightarrow D$, $B^+ = BD$ BAD

1st Solution:

<table>
<thead>
<tr>
<th>Table</th>
<th>FD</th>
<th>BCNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(A,B,C,D,E)$</td>
<td>$AB^+ = ABCD \neq ABCDE$</td>
<td></td>
</tr>
<tr>
<td>$S2(A,B,C,D)$</td>
<td>$B^+ = BD \neq ABCD$</td>
<td>[BCNF]</td>
</tr>
<tr>
<td>$S3(A,B,E)$</td>
<td></td>
<td>[BCNF]</td>
</tr>
<tr>
<td>$S4(B,D)$</td>
<td></td>
<td>[BCNF]</td>
</tr>
<tr>
<td>$S5(A,B,C)$</td>
<td></td>
<td>[BCNF]</td>
</tr>
</tbody>
</table>

Note: a set of attributes X is a superkey if $X^+ = ABCDE$
A table $S(A,B,C,D,E)$: Example 3

Consider the following FDs:

- $AB \rightarrow C$, $AB^+ = ABCD$ BAD
- $DE \rightarrow C$, $DE^+ = CDE$ BAD
- $B \rightarrow D$, $B^+ = BD$ BAD

$S(A,B,C,D,E)$
$[DE^+ = CDE \neq ABCDE]$

2nd Solution:

- $S2(A,B,D,E)$
 $[B^+ = BD \neq ABDE]$

- $S3(C,D,E)$
 $[BCNF]$

- $S4(B,D)$
 $[BCNF]$

- $S5(A,B,E)$
 $[BCNF]$

Note: a set of attributes X is a superkey if $X^+ = ABCDE$
A table $S(A,B,C,D,E)$: Example 3

Consider the following FDs:

- $AB \rightarrow C$, $AB^+ = ABCD$ BAD
- $DE \rightarrow C$, $DE^+ = CDE$ BAD
- $B \rightarrow D$, $B^+ = BD$ BAD

3rd Solution:

- $S(A,B,C,D,E)$
 $[B^+ = BD \neq ABCDE]$
- $S2(A,B,C,E)$
 $[AB^+ = ABC \neq ABCE]$
- $S3(B,D)$
 $[BCNF]$
- $S4(A,B,C)$
 $[BCNF]$
- $S5(A,B,E)$
 $[BCNF]$

Note: a set of attributes X is a superkey if $X^+ = ABCDE$