Introduction to Database Systems
CSE 444

Lecture 22: Query Optimization
May 30-June 2, 2008

Outline

• An example
• Query optimization: algebraic laws 16.2
• Cost-based optimization 16.5, 16.6
• Cost estimation: 16.4

Example

Product(pname, maker), Company(cname, city)

```
Select Product.pname
From Product, Company
Where Product.maker = Company.cname
    and Company.city = "Seattle"
```

• How do we execute this query?

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Companycname
Unclustered index: Product.maker, Company.city
Logical Plan:

\[
\sigma_{\text{city} = \text{"Seattle"}} \left(\text{Product}(\text{pname}, \text{maker}) \quad \text{Company}(\text{cname}, \text{city}) \quad \text{maker} = \text{cname} \right)
\]

Physical plan 1:

Index-based selection

\[
\sigma_{\text{city} = \text{"Seattle"}} \left(\text{ProductCompany}(\text{pname}, \text{maker}) \quad \text{Company}(\text{cname}, \text{city}) \quad \text{maker} = \text{cname} \right)
\]

Physical plans 2a and 2b:

Which one is better??
Physical plans 2a and 2b:

Plan 1: \(T(\text{Company})/V(\text{Company}, \text{city}) \times T(\text{Product})/V(\text{Product}, \text{maker}) \)
Plan 2a: \(B(\text{Company}) + 3B(\text{Product}) \)
Plan 2b: \(B(\text{Company}) + T(\text{Product}) \)

Which one is better??

It depends on the data!!

Example

\[
\begin{align*}
T(\text{Company}) &= 5,000 \\
B(\text{Company}) &= 500 \\
M &= 100 \\
T(\text{Product}) &= 100,000 \\
B(\text{Product}) &= 1,000
\end{align*}
\]

We may assume \(V(\text{Product}, \text{maker}) \approx T(\text{Company}) \) (why?)

- Case 1: \(V(\text{Company}, \text{city}) \approx T(\text{Company}) \)
 \[
 V(\text{Company}, \text{city}) = 2,000
 \]
- Case 2: \(V(\text{Company}, \text{city}) \ll T(\text{Company}) \)
 \[
 V(\text{Company}, \text{city}) = 20
 \]
Lessons

- Need to consider several physical plans
 - even for one, simple logical plan
- No magic “best” plan: depends on the data
- In order to make the right choice
 - need to have statistics over the data
 - the B’s, the T’s, the V’s

Query Optimization

- Have a SQL query Q
- Create a plan P
- Find equivalent plans \(P = P' = P'' = \ldots \)
- Choose the “cheapest”.

Logical Query Plan

```
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND P.city='seattle' AND Q.phone > '5430000'
```

```
Q = SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND P.city='seattle' AND Q.phone > '5430000'
```

```
P = \sigma_{\text{City='seattle'} \land \text{phone} > '5430000'} (P \bowtie_{\text{Buyer}=\text{name}} Q)
```

```
In class: find a “better” plan P’
```

Logical Query Plan

```
SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING sum(quantity) < 100
```

```
Q = SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING sum(quantity) < 100
```

```
P = \sigma_{\text{p < 100}} (T2(\text{city}, \text{p}))
```

```
T1(\text{city}, \text{p})
```

```
In class: find a “better” plan P’
```

```
sales(product, city, quantity)
```

The three components of an optimizer

We need three things in an optimizer:

• Algebraic laws
• An optimization algorithm
• A cost estimator

Algebraic Laws (incomplete list)

• Commutative and Associative Laws
 \[R \cup S = S \cup R, \quad R \cup (S \cup T) = (R \cup S) \cup T \]
 \[R \times S = S \times R, \quad R \times (S \times T) = (R \times S) \times T \]

• Distributive Laws
 \[R \times (S \cup T) = (R \times S) \cup (R \times T) \]

Algebraic Laws (incomplete list)

• Laws involving selection:
 \[\sigma_{C \text{ AND } C'}(R) = \sigma_C(\sigma_{C'}(R)) \]
 \[\sigma_{C \text{ OR } C'}(R) = \sigma_C(R) \cup \sigma_{C'}(R) \]

• When C involves only attributes of R
 \[\sigma_C(R \times S) = \sigma_C(R) \times S \]
 \[\sigma_C(R - S) = \sigma_C(R) - S \]
 \[\sigma_C(R \times S) = \sigma_C(R) \times S \]

Algebraic Laws

• Example: \(R(A, B, C, D), S(E, F, G) \)
 \[\sigma_{F=3}(R \times D=E S) = ? \]
 \[\sigma_{A=5 \text{ AND } G=9}(R \times D=E S) = ? \]
Algebraic Laws

• Laws involving projections
 \[\Pi_M(R \times S) = \Pi_M(\Pi_P(R) \times \Pi_Q(S)) \]
 \[\Pi_M(\Pi_N(R)) = \Pi_{M,N}(R) \]

• Example R(A,B,C,D), S(E, F, G)
 \[\Pi_{A,B,G}(R \times D=E S) = \Pi_{\gamma}(\Pi_{?}(R) \times D=E \Pi_{?}(S)) \]

Cost-based Optimizations

• Main idea: apply algebraic laws, until estimated cost is minimal
• Practically: start from partial plans, introduce operators one by one
 – Will see in a few slides
• Problem: there are too many ways to apply the laws, hence too many (partial) plans

Algebraic Laws

• Laws involving grouping and aggregation:
 \[\delta(\gamma_{A,\text{agg}}(R)) = \gamma_{A,\text{agg}}(R) \]
 \[\gamma_{A,\text{agg}}(\delta(R)) = \gamma_{A,\text{agg}}(R) \text{ if agg is “duplicate insensitive”} \]

• Which of the following are “duplicate insensitive”? sum, count, avg, min, max
 \[\gamma_{A,\text{agg}}(R(A,B) \times B=C S(C,D)) = \gamma_{A,\text{agg}}(R(A,B) \times B=C (\gamma_{C,\text{agg}}(S(C,D)))) \]

Cost-based Optimizations

Approaches:

• **Top-down**: the partial plan is a top fragment of the logical plan
• **Bottom up**: the partial plan is a bottom fragment of the logical plan
Dynamic Programming

Originally proposed in System R (the first research prototype for a relational database system -- late 70s)
- Only handles single block queries:

```
SELECT list
FROM list
WHERE cond_1 AND cond_2 AND ... AND cond_k
```

- Heuristics: selections down, projections up
- Dynamic programming: *join reordering*

Join Trees

- R₁ |×| R₂ |×| ... |×| Rₙ
- Join tree:

```
R₃ ─ R₁ ─ R₂ ─ R₄
```

- A plan = a join tree
- A partial plan = a subtree of a join tree

Types of Join Trees

- Left deep:

```
R₃ ─ R₁ ─ R₂ ─ R₄
```

- Bushy:

```
R₃ ─ R₁ ─ R₂ ─ R₄
```

```
R₃ ─ R₁ ─ R₅
```

```
R₃ ─ R₁ ─ R₂ ─ R₄
```

```
R₃ ─ R₁ ─ R₂ ─ R₄
```
Types of Join Trees

• Right deep:

Dynamic Programming

• Given: a query $R_1 \times R_2 \times \ldots \times R_n$
• Assume we have a function $\text{cost}()$ that gives us the cost of every join tree
• Find the best join tree for the query

Dynamic Programming

• Idea: for each subset of $\{R_1, \ldots, R_n\}$, compute the best plan for that subset
• In increasing order of set cardinality:
 – Step 1: for $\{R_1\}$, $\{R_2\}$, …, $\{R_n\}$
 – Step 2: for $\{R_1, R_2\}$, $\{R_1, R_3\}$, …, $\{R_{n-1}, R_n\}$
 – …
 – Step n: for $\{R_1, \ldots, R_n\}$
• It is a bottom-up strategy
• A subset of $\{R_1, \ldots, R_n\}$ is also called a subquery
Dynamic Programming

- **Step 1**: For each \(\{R_i\} \) do:
 - Size(\(\{R_i\} \)) = \(B(R_i) \)
 - Plan(\(\{R_i\} \)) = \(R_i \)
 - Cost(\(\{R_i\} \)) = (cost of scanning \(R_i \))

Dynamic Programming

- **Step i**: For each \(Q \subseteq \{R_1, \ldots, R_n\} \) of cardinality \(i \) do:
 - Compute Size(\(Q \)) (later…)
 - For every pair of subqueries \(Q', Q'' \)
 s.t. \(Q = Q' \cup Q'' \)
 compute cost(Plan(\(Q' \)) \(\times \) Plan(\(Q'' \)))
 - Cost(\(Q \)) = the smallest such cost
 - Plan(\(Q \)) = the corresponding plan

Dynamic Programming

- Return Plan(\(\{R_1, \ldots, R_n\} \))

Dynamic Programming

To illustrate, we will make the following simplifications:
- Cost(\(P_1 \times P_2 \)) = Cost(\(P_1 \)) + Cost(\(P_2 \)) + size(intermediate result(s))
- Intermediate results:
 - If \(P_1 = \) a join, then the size of the intermediate result is \(size(P_1) \), otherwise the size is 0
 - Similarly for \(P_2 \)
- Cost of a scan = 0
Dynamic Programming

- Example:
 - Cost(R5 \times R7) = 0 \quad (no \ intermediate \ results)
 - Cost((R2 \times R1) \times R7) = Cost(R2 \times R1) + Cost(R7) + size(R2 \times R1) = size(R2 \times R1)

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: T(A \times B) = 0.01 \times T(A) \times T(B)

<table>
<thead>
<tr>
<th>Subquery</th>
<th>Size</th>
<th>Cost</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>100k</td>
<td>0</td>
<td>RS</td>
</tr>
<tr>
<td>RT</td>
<td>60k</td>
<td>0</td>
<td>RT</td>
</tr>
<tr>
<td>RU</td>
<td>20k</td>
<td>0</td>
<td>RU</td>
</tr>
<tr>
<td>ST</td>
<td>150k</td>
<td>0</td>
<td>ST</td>
</tr>
<tr>
<td>SU</td>
<td>50k</td>
<td>0</td>
<td>SU</td>
</tr>
<tr>
<td>TU</td>
<td>30k</td>
<td>0</td>
<td>TU</td>
</tr>
<tr>
<td>RST</td>
<td>3M</td>
<td>60k</td>
<td>(RT)S</td>
</tr>
<tr>
<td>RSU</td>
<td>1M</td>
<td>20k</td>
<td>(RU)S</td>
</tr>
<tr>
<td>RTU</td>
<td>0.6M</td>
<td>20k</td>
<td>(RU)T</td>
</tr>
<tr>
<td>STU</td>
<td>1.5M</td>
<td>30k</td>
<td>(TU)S</td>
</tr>
<tr>
<td>RSTU</td>
<td>30M</td>
<td>60k+50k+110k</td>
<td>(RT)(SU)</td>
</tr>
</tbody>
</table>
Reducing the Search Space

- Left-linear trees v.s. Bushy trees
- Trees without cartesian product

Example: \(R(A,B) \times S(B,C) \times T(C,D) \)

Plan: \((R(A,B) \times T(C,D)) \times S(B,C) \) has a cartesian product – most query optimizers will not consider it

Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
 - Left linear joins may reduce time
 - Non-cartesian products may reduce time further

Rule-Based Optimizers

- **Extensible** collection of rules
 - Rule = Algebraic law with a direction
- Algorithm for firing these rules
 - Generate many alternative plans, in some order
 - Prune by cost
- Volcano (later SQL Sever)
- Starburst (later DB2)

Completing the Physical Query Plan

- Choose algorithm to implement each operator
 - Need to account for more than cost:
 - How much memory do we have?
 - Are the input operand(s) sorted?
- Decide for each intermediate result:
 - To materialize
 - To pipeline
Materialize Intermediate Results Between Operators

Given \(B(R), B(S), B(T), B(U) \)

- What is the total cost of the plan?
 - Cost =
- How much main memory do we need?
 - \(M = \)

Pipeline Between Operators
Example

• Logical plan is:

Naïve evaluation:
• 2 partitioned hash-joins
• Cost $3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k$

Smarter:
• Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
• Step 2: hash S on x into 100 buckets; to disk
• Step 3: read each R_i in memory (50 buffer) join with S_i (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we pipeline
• Cost so far: $3B(R) + 3B(S)$
Example

M = 101

k blocks \[\leq 50\]

R(w,x) 5,000 blocks 10,000 blocks

S(x,y)

U(y,z) 10,000 blocks

Continuing:
- How large are the 50 buckets on y? Answer: k/50.
- If k ≤ 50 then keep all 50 buckets in Step 3 in memory, then:
 - Step 4: read U from disk, hash on y and join with memory
 - Total cost: 3B(R) + 3B(S) + B(U) = 55,000

Example

M = 101

k blocks \[> 5000\]

R(w,x) 5,000 blocks 10,000 blocks

S(x,y)

U(y,z) 10,000 blocks

Continuing:
- If 50 < k ≤ 5000 then materialize instead of pipeline
 - 2 partitioned hash-joins
 - Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75,000 + 4k

Example

M = 101

k blocks \[\leq 50\]

R(w,x) 5,000 blocks 10,000 blocks

S(x,y)

U(y,z) 10,000 blocks

Continuing:
- If k > 5000 then materialize instead of pipeline
 - 2 partitioned hash-joins
 - Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75,000 + 4k

Example

Summary:
- If k ≤ 50, cost = 55,000
- If 50 < k ≤ 5000, cost = 75,000 + 2k
- If k > 5000, cost = 75,000 + 4k
Size Estimation

The problem: Given an expression E, compute T(E) and V(E, A)

• This is hard without computing E
• Will ‘estimate’ them instead

Size Estimation

Estimating the size of a projection
• Easy: T(\(\Pi_A(R)\)) = T(R)
• This is because a projection doesn’t eliminate duplicates

Estimating the size of a selection
• \(S = \sigma_{A <}(R)\)
 – T(S) can be anything from 0 to T(R) – V(R, A) + 1
 – Estimate: T(S) = T(R)/V(R, A)
 – When V(R, A) is not available, estimate T(S) = T(R)/10

• \(S = \sigma_{A >}(R)\)
 – T(S) can be anything from 0 to T(R)
 – Estimate: T(S) = (c - Low(R, A))/(High(R, A) - Low(R, A))T(R)
 – When Low, High unavailable, estimate T(S) = T(R)/3

Estimating the size of a natural join, R \(\times\) \(|A|\) S
• When the set of A values are disjoint, then T(R \(\times\) \(|A|\) S) = 0
• When A is a key in S and a foreign key in R, then T(R \(\times\) \(|A|\) S) = T(R)
• When A has a unique value, the same in R and S, then T(R \(\times\) \(|A|\) S) = T(R) T(S)
Size Estimation

Assumptions:

• **Containment of values:** if \(V(R,A) \leq V(S,A) \), then the set of \(A \) values of \(R \) is included in the set of \(A \) values of \(S \)
 – Note: this indeed holds when \(A \) is a foreign key in \(R \), and a key in \(S \)

• **Preservation of values:** for any other attribute \(B \),
 \(V(R \times A S, B) = V(R, B) \) (or \(V(S, B) \))

Size Estimation

Example:

• \(T(R) = 10000, \ T(S) = 20000 \)
• \(V(R,A) = 100, \ V(S,A) = 200 \)
• How large is \(R \times A S \) ?

Answer: \(T(R \times A S) = 10000 \times 20000 / 200 = 1M \)

Size Estimation

Assume \(V(R,A) \leq V(S,A) \)

• Then each tuple \(t \) in \(R \) joins some tuple(s) in \(S \)
 – How many?
 – On average \(T(S) / V(S,A) \)
 – \(t \) will contribute \(T(S) / V(S,A) \) tuples in \(R \times A S \)

• Hence \(T(R \times A S) = T(R) \ T(S) / V(S,A) \)

In general: \(T(R \times A S) = T(R) \ T(S) / \max(V(R,A),V(S,A)) \)

Size Estimation

Joins on more than one attribute:

• \(T(R \times A,B S) = \)

\(T(R) \ T(S) / (\max(V(R,A),V(S,A)) \times \max(V(R,B),V(S,B))) \)
Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

<table>
<thead>
<tr>
<th>Salary</th>
<th>0..20k</th>
<th>20k..40k</th>
<th>40k..60k</th>
<th>60k..80k</th>
<th>80k..100k</th>
<th>> 100k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

- \(T(\text{Employee}) = 25000, \) but now we know the distribution

Histograms

<table>
<thead>
<tr>
<th>RankName, salary</th>
<th>0.20k</th>
<th>0.40k</th>
<th>0.60k</th>
<th>0.80k</th>
<th>1.00k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RankName, salary</th>
<th>0.20k</th>
<th>0.40k</th>
<th>0.60k</th>
<th>0.80k</th>
<th>1.00k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranks</td>
<td>8</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

- Eqwidth
- Eqdepth

<table>
<thead>
<tr>
<th>Salary</th>
<th>0.20k</th>
<th>0.40k</th>
<th>0.60k</th>
<th>0.80k</th>
<th>1.00k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>104</td>
<td>9739</td>
<td>152</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salary</th>
<th>0.44k</th>
<th>0.48k</th>
<th>0.50k</th>
<th>0.56k</th>
<th>0.55k</th>
</tr>
</thead>
</table>