Introduction to Database Systems CSE 444

Lecture 22: Query Optimization

May 30-June 2, 2008

Example

Product(pname, maker), Company(cname, city)
Select Product.pname
Select Product.pname
From Product, Company
From Product, Company
Where Product.maker=Company.cname
Where Product.maker=Company.cname
and Company.city $=$ "Seattle"
and Company.city $=$ "Seattle"

- How do we execute this query?

Outline

- An example
- Query optimization: algebraic laws 16.2
- Cost-based optimization 16.5, 16.6
- Cost estimation: 16.4

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Company.cname
Unclustered index: Product.maker, Company.city

Logical Plan:

Physical plan 1:


```
Plan 1: T(Company)/V(Company,city) }
                                    T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)
```


Which Plan is Best?

```
Plan 1: T(Company)/V(Company,city) }\times\textrm{T}(\mathrm{ (Product)/V(Product,maker)
Plan 1: T(Company)/V(Company,city)
Plan 2b: B(Company) + T(Product)
```

- Case $1: \mathrm{V}($ Company, city $) \approx \mathrm{T}$ (Company)
$\mathrm{V}($ Company,city $)=2,000$
Case 1:

Case 2:

Lessons

- Need to consider several physical plans
- even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
- need to have statistics over the data
- the B's, the T's, the V's
- Choose the "cheapest".

Query Optimzation

- Have a SQL query Q
- Create a plan P

HOW ??

- Find equivalent plans $\mathrm{P}=\mathrm{P}^{\prime}=\mathrm{P}^{\prime}{ }^{\prime}=\ldots$

Logical Query Plan

$$
\mathrm{Q}=\begin{aligned}
& \text { SELECT city, sum(quantity) } \\
& \text { FROM sales } \\
& \text { GROUP BY city } \\
& \text { HAVING sum(quantity) }<100
\end{aligned}
$$

$\mathrm{P}=\left.\left.\right|_{\text {sales }}\right|_{\mathrm{p}<100} \mathrm{~T} 2$ (city,p)
T 1 (city,p)
$\left.\right|_{\text {coduct, city, quantity) }}$
find a "better" plan P'
16

The three components of an optimizer

We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

Algebraic Laws (incomplete list)

- Commutative and Associative Laws
$R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T$
$R|x| S=S|x| R, R|x|(S|x| T)=(R|x| S)|x| T$
- Distributive Laws
$R|x|(S \cup T)=(R|x| S) \cup(R|x| T)$

Algebraic Laws (incomplete list)

- Laws involving selection:
$\sigma_{\text {C AND } C^{\prime}}(\mathrm{R})=\sigma_{\mathrm{C}}\left(\sigma_{\mathrm{C}^{\prime}}(\mathrm{R})\right)$
$\sigma_{\mathrm{CORC}}(\mathrm{R})=\sigma_{\mathrm{C}}(\mathrm{R}) \cup \sigma_{\mathrm{C}^{\prime}}(\mathrm{R})$
- When C involves only attributes of R
$\sigma_{C}(\mathrm{R}|\times| \mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})|\times| \mathrm{S}$
$\sigma_{\mathrm{C}}(\mathrm{R}-\mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})-\mathrm{S}$
$\sigma_{\mathrm{C}}(\mathrm{R}|\times| \mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})|\times| \mathrm{S}$

Algebraic Laws

- Example: R(A, B, C, D), S(E, F, G)
$\sigma_{\mathrm{F}=3}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=$?
$\sigma_{\mathrm{A}=5 \mathrm{AND} \mathrm{G}=9}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=$?

Algebraic Laws

- Laws involving projections
$\Pi_{M}(\mathrm{R}|\times| \mathrm{S})=\Pi_{\mathrm{M}}\left(\Pi_{\mathrm{P}}(\mathrm{R})|\times| \Pi_{\mathrm{Q}}(\mathrm{S})\right)$
$\Pi_{M}\left(\Pi_{N}(R)\right)=\Pi_{M, N}(R)$
- Example R(A,B,C,D), S(E, F, G)
$\Pi_{\mathrm{A}, \mathrm{B}, \mathrm{G}}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=\Pi_{?}^{(}\left(\Pi_{?}(\mathrm{R})|\times|_{\mathrm{D}=\mathrm{E}} \Pi_{?}(\mathrm{~S})\right)$

Algebraic Laws

- Laws involving grouping and aggregation:
$\delta\left(\gamma_{A, \operatorname{agg}(B)}(R)\right)=\gamma_{A, \operatorname{agg}(B)}(R)$
$\gamma_{A, \operatorname{agg}(B)}(\delta(R))=\gamma_{A, \text { agg(B) }}(R)$ if agg is "duplicate insensitive"
- Which of the following are "duplicate insensitive"? sum, count, avg, min, max
$\gamma_{A, \operatorname{agg}(\mathrm{D})}\left(\mathrm{R}(\mathrm{A}, \mathrm{B})|\times|_{\mathrm{B}=\mathrm{C}} \mathrm{S}(\mathrm{C}, \mathrm{D})\right)=$
$\gamma_{A, \operatorname{agg}(D)}\left(\mathrm{R}(\mathrm{A}, \mathrm{B})|\times|_{\mathrm{B}=\mathrm{C}}\left(\gamma_{\mathrm{C}, \operatorname{agg}(\mathrm{D})} \mathrm{S}(\mathrm{C}, \mathrm{D})\right)\right)$

Cost-based Optimizations

Approaches:

- Top-down: the partial plan is a top fragment of the logical plan
- Will see in a few slides
- Problem: there are too many ways to apply the laws, hence too many (partial) plans
- Bottom up: the partial plan is a bottom fragment of the logical plan

Dynamic Programming

Originally proposed in System R (the first research prototype for a relational database system -- late 70s)

- Only handles single block queries:

SELECT list
FROM list
WHERE cond
1

- Heuristics: selections down, projections up
- Dynamic programming: join reordering

Types of Join Trees

- Left deep:

Join Trees

- R1 |x| R2 $|\times|\ldots . .|\times|$ Rn
- Join tree:

- A plan = a join tree
- A partial plan = a subtree of a join tree

Types of Join Trees

- Bushy:

Types of Join Trees

- Right deep:

- Given: a query R1 ${ }_{|x|}$ R2 $|\times|\ldots| x|$ Rn
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

Dynamic Programming

Dynamic Programming

Dynamic Programming

- Idea: for each subset of $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$, compute the best plan for that subset
- In increasing order of set cardinality:
- Step 1: for $\{R 1\},\{R 2\}, \ldots,\{R n\}$
- Step 2: for $\{\mathrm{R} 1, \mathrm{R} 2\},\{\mathrm{R} 1, \mathrm{R} 3\}, \ldots,\{\mathrm{Rn}-1, \mathrm{Rn}\}$
- Step n: for $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$
- It is a bottom-up strategy
- A subset of $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ is also called a subquery

Dynamic Programming

- Step 1: For each $\left\{\mathrm{R}_{\mathrm{i}}\right\}$ do:
$-\operatorname{Size}\left(\left\{R_{i}\right\}\right)=B\left(R_{i}\right)$
$-\operatorname{Plan}\left(\left\{R_{i}\right\}\right)=R_{i}$
$-\operatorname{Cost}\left(\left\{R_{i}\right\}\right)=\left(\right.$ cost of scanning $\left.R_{i}\right)$

Dynamic Programming

- Step i: For each $\mathrm{Q} \subseteq\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}$ of cardinality i do:
- Compute Size(Q) (later...)
- For every pair of subqueries Q', Q" s.t. $\mathrm{Q}=\mathrm{Q}$ ' $\cup \mathrm{Q}^{\prime}$ ' compute $\operatorname{cost}\left(\operatorname{Plan}\left(Q^{\prime}\right)|\times| \operatorname{Plan}\left(Q^{\prime \prime}\right)\right)$
$-\operatorname{Cost}(\mathrm{Q})=$ the smallest such cost
$-\operatorname{Plan}(\mathrm{Q})=$ the corresponding plan

Dynamic Programming

Dynamic Programming

- Return $\operatorname{Plan}\left(\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}\right)$

To illustrate, we will make the following simplifications:

- $\operatorname{Cost}\left(\mathrm{P}_{1}|\times| \mathrm{P}_{2}\right)=\operatorname{Cost}\left(\mathrm{P}_{1}\right)+\operatorname{Cost}\left(\mathrm{P}_{2}\right)+$ size(intermediate result(s))
- Intermediate results:
- If $\mathrm{P}_{1}=$ a join, then the size of the intermediate result is $\operatorname{size}\left(\mathrm{P}_{1}\right)$, otherwise the size is 0
- Similarly for P_{2}
- Cost of a scan $=0$

Dynamic Programming

- Example:
- $\operatorname{Cost}(\mathrm{R} 5|\times| \mathrm{R} 7)=0 \quad$ (no intermediate results)
- $\operatorname{Cost}((\mathrm{R} 2|\times| \mathrm{R} 1)|\times| \mathrm{R} 7)$
$=\operatorname{Cost}(\mathrm{R} 2|\times| \mathrm{R} 1)+\operatorname{Cost}(\mathrm{R} 7)+\operatorname{size}(\mathrm{R} 2|\times| \mathrm{R} 1)$
- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: $\mathrm{T}(\mathrm{A}|\times| \mathrm{B})=0.01 * \mathrm{~T}(\mathrm{~A}) * \mathrm{~T}(\mathrm{~B})$

Dynamic Programming

$=\operatorname{size}(\mathrm{R} 2|\times| \mathrm{R} 1)$

| Subquery | Size | Cost | Plan |
| :---: | :---: | :---: | :---: | :---: |
| RS | | | |
| RT | | | |
| RU | | | |
| ST | | | |
| SU | | | |
| TU | | | |
| RST | | | |
| RSU | | | |
| RTU | | | |
| STU | | | |
| RSTU | | | |

| Subquery | Size | Cost | Plan |
| :---: | :---: | :---: | :---: | :---: |
| RS | 100 k | 0 | RS |
| RT | 60 k | 0 | RT |
| RU | 20 k | 0 | RU |
| ST | 150 k | 0 | ST |
| SU | 50 k | 0 | SU |
| TU | 30 k | 0 | TU |
| RST | 3 M | 60 k | (RT)S |
| RSU | 1 M | 20 k | (RU)S |
| RTU | 0.6 M | 20 k | (RU)T |
| STU | 1.5 M | 30 k | (TU)S |
| RSTU | 30 M | $60 \mathrm{k}+50 \mathrm{k}=110 \mathrm{k}$ | (RT)(SU) |

Reducing the Search Space

- Left-linear trees v.s. Bushy trees
- Trees without cartesian product

Example: $\mathrm{R}(\mathrm{A}, \mathrm{B})|\times|\mathrm{S}(\mathrm{B}, \mathrm{C})| \times| \mathrm{T}(\mathrm{C}, \mathrm{D})$

Dynamic Programming: Summary

- Handles only join queries:
- Selections are pushed down (i.e. early)
- Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
- Left linear joins may reduce time
- Non-cartesian products may reduce time further

Plan: $(R(A, B)|\times| T(C, D))|\times| S(B, C)$ has a cartesian product - most query optimizers will not consider it

Rule-Based Optimizers

- Extensible collection of rules

Completing the

 Physical Query Plan- Choose algorithm to implement each operator
Rule $=$ Algebraic law with a direction
- Algorithm for firing these rules

Generate many alternative plans, in some order Prune by cost

- Need to account for more than cost:
- How much memory do we have ?
- Are the input operand(s) sorted ?
- Volcano (later SQL Sever)
- Starburst (later DB2)

Materialize Intermediate Results

Between Operators

Question in class

Given $\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}), \mathrm{B}(\mathrm{T}), \mathrm{B}(\mathrm{U})$

- What is the total cost of the plan?
- Cost=
- How much main memory do we need ?
- $\mathrm{M}=$

Pipeline Between Operators

Question in class

Given $B(R), B(S), B(T), B(U)$

- What is the total cost of the plan ?
- Cost =
- How much main memory do we need ?
- $\mathrm{M}=$

Pipeline in Bushy Trees

Example

- Logical plan is:

- Main memory $\mathrm{M}=101$ buffers

Example

$M=101$

Naïve evaluation:

- 2 partitioned hash-joins
- $\operatorname{Cost} 3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75000+4 \mathrm{k}$

Example

$M=101$

Continuing:

- How large are the 50 buckets on y ? Answer: k/50.
- If $\mathrm{k}<=50$ then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+\mathrm{B}(\mathrm{U})=55,000$

Example

$\mathrm{M}=101$

Continuing:

- If $\mathrm{k}>5000$ then materialize instead of pipeline
- 2 partitioned hash-joins
- $\operatorname{Cost} 3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75000+4 \mathrm{k}$

Example

Summary:

- If $\mathrm{k}<=50, \quad \operatorname{cost}=55,000$
- If $50<\mathrm{k}<=5000, \quad$ cost $=75,000+2 \mathrm{k}$
- If $\mathrm{k}>5000, \quad \operatorname{cost}=75,000+4 \mathrm{k}$

Example

$M=101$

Continuing

- If $50<\mathrm{k}<=5000$ then send the 50 buckets in Step 3 to disk
- Each bucket has size $\mathrm{k} / 50<=100$
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+2 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75,000+2 \mathrm{k}$

Size Estimation

The problem: Given an expression E, compute $T(E)$ and $V(E, A)$

- This is hard without computing E
- Will 'estimate’ them instead

Size Estimation

Estimating the size of a projection

- Easy: $\mathrm{T}\left(\Pi_{\mathrm{L}}(\mathrm{R})\right)=\mathrm{T}(\mathrm{R})$
- This is because a projection doesn't eliminate duplicates

Size Estimation

Estimating the size of a selection

- $\mathrm{S}=\sigma_{\mathrm{A}=\mathrm{c}}(\mathrm{R})$
- $T(S)$ san be anything from 0 to $T(R)-V(R, A)+1$
- Estimate: $T(S)=T(R) / V(R, A)$
- When $\mathrm{V}(\mathrm{R}, \mathrm{A})$ is not available, estimate $\mathrm{T}(\mathrm{S})=\mathrm{T}(\mathrm{R}) / 10$
- $\mathrm{S}=\sigma_{\mathrm{A}<\mathrm{c}}(\mathrm{R})$
- $T(S)$ can be anything from 0 to $T(R)$
- Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)
- When Low, High unavailable, estimate $T(S)=T(R) / 3$

Size Estimation

Estimating the size of a natural join, $R|\times|_{A} S$

- When the set of A values are disjoint, then $\mathrm{T}\left(\mathrm{R}|\times|_{\mathrm{A}} \mathrm{S}\right)=0$
- When A is a key in S and a foreign key in R, then $T\left(R|\times|_{A} S\right)=T(R)$
- When A has a unique value, the same in R and S, then $T\left(R|\times|_{A} S\right)=T(R) T(S)$

Size Estimation

Assumptions

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{A})$, then the set of A values of R is included in the set of A values of S
- Note: this indeed holds when A is a foreign key in R , and a key in S
- Preservation of values: for any other attribute B , $\mathrm{V}\left(\mathrm{R}|\times|_{\mathrm{A}} \mathrm{S}, \mathrm{B}\right)=\mathrm{V}(\mathrm{R}, \mathrm{B}) \quad($ or $\mathrm{V}(\mathrm{S}, \mathrm{B}))$

Size Estimation

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{A})$

- Then each tuple t in R joins some tuple(s) in S
- How many?
- On average $\mathrm{T}(\mathrm{S}) / \mathrm{V}(\mathrm{S}, \mathrm{A})$
- t will contribute $T(S) / V(S, A)$ tuples in $R|\times|_{A} S$
- Hence $T\left(R|\times|_{A} S\right)=T(R) T(S) / V(S, A)$

In general: $\mathrm{T}\left(\mathrm{R}|\times|_{\mathrm{A}} \mathrm{S}\right)=\mathrm{T}(\mathrm{R}) \mathrm{T}(\mathrm{S}) / \max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))$

Size Estimation

Example:

- $\mathrm{T}(\mathrm{R})=10000, \mathrm{~T}(\mathrm{~S})=20000$
- $\mathrm{V}(\mathrm{R}, \mathrm{A})=100, \mathrm{~V}(\mathrm{~S}, \mathrm{~A})=200$
- How large is $R|\times|_{A} S$?

Answer: $T\left(R|\times|_{A} S\right)=1000020000 / 200=1 \mathrm{M}$

Size Estimation

Joins on more than one attribute:

- $\mathrm{T}\left(\mathrm{R}|\times|_{\mathrm{A}, \mathrm{B}} \mathrm{S}\right)=$
$\mathrm{T}(\mathrm{R}) \mathrm{T}(\mathrm{S}) /\left(\max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))^{*} \max (\mathrm{~V}(\mathrm{R}, \mathrm{B}), \mathrm{V}(\mathrm{S}, \mathrm{B}))\right)$

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Ranks(rankName, salary)

- Estimate the size of Employee $|\times|_{\text {Salary }}$ Ranks

Employee $0 . .20 \mathrm{k}$ $20 \mathrm{k} . .40 \mathrm{k}$ 40 k .60 k $60 \mathrm{k} . .80 \mathrm{k}$ 80 k .100 k $>100 \mathrm{k}$ 200 800 5000 12000 6500 500
Ranks $0 . .20 \mathrm{k}$ $20 \mathrm{k} . .40 \mathrm{k}$ 40 k .60 k $60 \mathrm{k} . .80 \mathrm{k}$ $80 \mathrm{k} . .100 \mathrm{k}$$\gg 100 \mathrm{k}$

