Outline

- Hash-tables (13.4)
- Query execution: 15.1 – 15.5

Architecture of a Database Engine

Logical Algebra Operators

- Union, intersection, difference
- Selection σ
- Projection Π
- Join \bowtie
- Duplicate elimination δ
- Grouping γ
- Sorting τ
Physical Operators

Will learn today and the following lectures:
- Join:
 - Main-memory hash based join
 - Block-based nested-loop join
 - Partitioned hash-based join
 - Merge-join
 - Index-join
- Group-by / Duplicate-elimination:
 -

Question in Class

Logical operator:
Product(pname, cname)▷◁Company(cname, city)

Propose three physical operators for the join, assuming the tables are in main memory:
1.
2.
3.

Cost Parameters

The cost of an operation = total number of I/Os
- result assumed to be delivered in main memory

Cost parameters:
- \(B(R) = \) number of blocks for relation \(R \)
- \(T(R) = \) number of tuples in relation \(R \)
- \(V(R, a) = \) number of distinct values of attribute \(a \)
- \(M = \) size of main memory buffer pool, in blocks

Question in Class

Product(pname, cname)▷◁Company(cname, city)

- 1000000 products
- 1000 companies

How much time do the following physical operators take if the data is in main memory?

- Nested loop join time =
- Sort and merge = merge-join time =
- Hash join time =

5 6 7 8
Cost Parameters

- **Clustered** table R:
 - Blocks consists only of records from this table
 - $B(R) \ll T(R)$
- **Unclustered** table R:
 - Its records are placed on blocks with other tables
 - $B(R) \approx T(R)$

- When a is a key, $V(R,a) = T(R)$
- When a is not a key, $V(R,a)$

Selection and Projection

Selection $\sigma(R)$, projection $\Pi(R)$

- Both are *tuple-at-a-time* algorithms
- Cost: $B(R)$

Hash Tables

- Key data structure used in many operators
- May also be used for indexes, as alternative to B+trees
- Recall basics:
 - There are n buckets
 - A hash function $h(k)$ maps a key k to $\{0, 1, \ldots, n-1\}$
 - Store in bucket $h(k)$ a pointer to record with key k
- Secondary storage: bucket = block, use overflow blocks when needed

Hash Table Example

- Assume 1 bucket (block) stores 2 keys + pointers
- $h(e)=0$
- $h(b)=h(f)=1$
- $h(g)=2$
- $h(a)=h(c)=3$

Here: $h(x) = x \mod 4$
Searching in a Hash Table

- Search for a:
 - Compute $h(a)=3$
 - Read bucket 3
 - 1 disk access

<table>
<thead>
<tr>
<th>Bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

Insertion in Hash Table

- Place in right bucket, if space
 - E.g. $h(d)=2$

<table>
<thead>
<tr>
<th>Bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>d</td>
</tr>
</tbody>
</table>

Insertion in Hash Table

- Create overflow block, if no space
 - E.g. $h(k)=1$

<table>
<thead>
<tr>
<th>Bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>k</td>
</tr>
<tr>
<td>d</td>
</tr>
</tbody>
</table>

- More overflow blocks may be needed

<table>
<thead>
<tr>
<th>Bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

Hash Table Performance

- Excellent, if no overflow blocks
- Degrades considerably when number of keys exceeds the number of buckets (i.e. many overflow blocks).
Main Memory Hash Join

Hash join: $R \bowtie S$
- Scan S, build buckets in main memory
- Then scan R and join

- Cost: $B(R) + B(S)$
- Assumption: $B(S) \leq M$

Duplicate Elimination

Duplicate elimination $\delta(R)$
- Hash table in main memory

- Cost: $B(R)$
- Assumption: $B(\delta(R)) \leq M$

Grouping

Grouping:

Product(name, department, quantity)

$\gamma_{\text{department, sum(quantity)}}(\text{Product}) \rightarrow$

Answer(department, sum)

Main memory hash table

Question: How?

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$

 for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

- Cost: $T(R)B(S)$ when S is clustered
- Cost: $T(R)T(S)$ when S is unclustered
Nested Loop Joins

• We can be much more clever

• Question: how would you compute the join in the following cases? What is the cost?
 – B(R) = 1000, B(S) = 2, M = 4
 – B(R) = 1000, B(S) = 3, M = 4
 – B(R) = 1000, B(S) = 6, M = 4

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r, s)

Block-Based Nested-loop Join

• Cost:
 – Read S once: cost B(S)
 – Outer loop runs B(S)/(M-2) times, and each time need to read R: costs B(S)B(R)/(M-2)
 – Total cost: B(S) + B(S)B(R)/(M-2)
• Notice: it is better to iterate over the smaller relation first
• R ∞ S: R=outer relation, S=inner relation
Index Based Join

- \(R \bowtie S \)
- Assume \(S \) has an index on the join attribute

\[
\text{for each tuple } r \text{ in } R \text{ do} \\
\text{lookup the tuple(s) } s \text{ in } S \text{ using the index} \\
\text{output } (r, s)
\]

Cost (Assuming \(R \) is clustered):

- If index is clustered: \(B(R) + T(R)B(S)/V(S,a) \)
- If index is unclustered: \(B(R) + T(R)T(S)/V(S,a) \)

Index Based Selection

Selection on equality: \(\sigma_{a=v}(R) \)

- Clustered index on \(a \): cost \(B(R)/V(R,a) \)
- Unclustered index on \(a \): cost \(T(R)/V(R,a) \)
 - We have seen that this is like a join

Example:

\[
\begin{array}{c|c|c}
B(R) & 2000 \\
T(R) & 100,000 \\
V(R, a) & 20
\end{array}
\]

Cost of \(\sigma_{a=v}(R) = ? \)

- Table scan (assuming \(R \) is clustered):
 - \(B(R) = 2,000 \) I/Os
- Index based selection:
 - If index is clustered: \(B(R)/V(R,a) = 100 \) I/Os
 - If index is unclustered: \(T(R)/V(R,a) = 5,000 \) I/Os

Lesson: don’t build unclustered indexes when \(V(R,a) \) is small!
Operations on Very Large Tables

• Partitioned hash algorithms

• Merge-sort algorithms

Partitioned Hash Algorithms

• Idea: partition a relation R into buckets, on disk

• Each bucket has size approx. B(R)/M

\[
\text{Relation } R \xrightarrow{\text{hash function}} \text{Partitions} \xrightarrow{\text{M main memory buffers}} \text{Disk}
\]

• Does each bucket fit in main memory?
 - Yes if B(R)/M ≤ M, i.e. B(R) ≤ M^2

Duplicate Elimination

• Recall: \(\delta(R) = \) duplicate elimination
• Step 1. Partition R into buckets
• Step 2. Apply \(\delta \) to each bucket (may read in main memory)

• Cost: 3B(R)
• Assumption: B(R) ≤ M^2

Grouping

• Recall: \(\gamma(R) = \) grouping and aggregation
• Step 1. Partition R into buckets
• Step 2. Apply \(\gamma \) to each bucket (may read in main memory)

• Cost: 3B(R)
• Assumption: B(R) ≤ M^2
Partitioned Hash Join

- **R >> S**
 - **Step 1:**
 - Hash S into M buckets
 - Send all buckets to disk
 - **Step 2**
 - Hash R into M buckets
 - Send all buckets to disk
 - **Step 3**
 - Join every pair of buckets

- **Cost:** $3B(R) + 3B(S)$
- **Assumption:** $\min(B(R), B(S)) \leq M^2$

Hash-Join

- Partition both relations using hash function h: R tuples in partition i will only match S tuples in partition i.
- Read in a partition of R, hash it using $h_2 (\ll h_1)$. Scan matching partition of S, search for matches.

External Sorting

- **Problem:**
- Sort a file of size B with memory M
- **Where we need this:**
 - ORDER BY in SQL queries
 - Several physical operators
 - Bulk loading of B+-tree indexes.
- **Will discuss only 2-pass sorting, for when $B < M^2$**
External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

External Merge-Sort: Step 2

- Merge $M - 1$ runs into a new run
- Result: runs of length M ($M - 1) \approx M^2$

Cost of External Merge Sort

- Read+write+read = $3B(R)$
- Assumption: $B(R) \leq M^2$

Duplicate Elimination

Duplicate elimination $\delta(R)$

- Idea: do a two step merge sort, but change one of the steps

- Question in class: which step needs to be changed and how?

- Cost = $3B(R)$
- Assumption: $B(\delta(R)) \leq M^2$
Grouping

Grouping: \(\gamma_{a, \text{sum}(b)} (R) \)
- Same as before: sort, then compute the sum(b) for each group of a’s
- Total cost: 3\(B(R) \)
- Assumption: \(B(R) \leq M^2 \)

Merge-Join

Join \(R \bowtie S \)
- Step 1a: initial runs for \(R \)
- Step 1b: initial runs for \(S \)
- Step 2: merge and join

Two-Pass Algorithms Based on Sorting

Join \(R \bowtie S \)
- If the number of tuples in \(R \) matching those in \(S \) is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3\(B(R) + 3B(S) \)
- Assumption: \(B(R) + B(S) \leq M^2 \)
Summary of External Join Algorithms

• Block Nested Loop: $B(S) + B(R) \times B(S)/M$

• Index Join: $B(R) + T(R)B(S)/V(S,a)$

• Partitioned Hash: $3B(R)+3B(S)$;
 $\min(B(R),B(S)) \leq M^2$

• Merge Join: $3B(R)+3B(S)$
 $B(R)+B(S) \leq M^2$