
5/6/2008

1

Introduction to Database Systems
CSE 444

Lectures 15-16:
Recovery

May 7-9, 2008

1

y ,

Announcements

Homework 3:Homework 3:
• Attributes v.s. elements: /item v.s. /@item
• Data is not clean

– OK to return any sensible answer, no need to clean 
• See the two examples in the mini-tutorial (e.g 

f t i )

2

fn:string)
• Check the lecture notes (e.g. for group-by)
• If query doesn’t work, try a simpler one to debug

Outline

• Undo logging 17 2• Undo logging 17.2
• Redo logging 17.3
• Redo/undo 17.4

3

Transaction Management

Two parts:Two parts:

• Recovery from crashes:  ACID
• Concurrency control:      ACID

4

Both operate on the buffer pool



5/6/2008

2

Recovery

From which of the events below can aFrom which of the events below can a 
database actually recover ?

• Wrong data entry
• Disk failure
• Fire / earthquake / bankrupcy /

5

• Fire / earthquake / bankrupcy / ….
• Systems crashes

Recovery
Type of Crash Prevention

Wrong data entry Constraints and
Data cleaning

Disk crashes Redundancy: 
e.g. RAID, archive

6

Fire, theft, 
bankruptcy…

Buy insurance, 
Change jobs…

System failures:
e.g. power

DATABASE
RECOVERY

Most
frequent

System Failures

• Each transaction has internal state• Each transaction has internal state
• When system crashes, internal state is lost

– Don’t know which parts executed and which 
didn’t

• Remedy: use a log

7

y g
– A file that records every single action of the 

transaction

Transactions

• Assumption: the database is composed ofAssumption: the database is composed of 
elements
– Usually 1 element = 1 block
– Can be smaller (=1 record) or larger (=1 

relation)
• Assumption: each transaction reads/writes

8

• Assumption: each transaction reads/writes 
some elements



5/6/2008

3

Primitive Operations of 
Transactions

• READ(X t)READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)

9

– read element X to memory buffer
• OUTPUT(X)

– write element X to disk

Example
START TRANSACTION
READ(A,t); 
t := t*2;
WRITE(A,t); 
READ(B,t); 

Atomicity:
BOTH A and B
are multiplied by 2

10

( , );
t := t*2;
WRITE(B,t)
COMMIT;

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t)

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

11

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8t:=t 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B t) 16 16 16 8 8

12

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity



5/6/2008

4

The Log

• An append only file containing log records• An append-only file containing log records
• Note: multiple transactions run 

concurrently, log records are interleaved
• After a system crash, use log to:

– Redo some transaction that didn’t commit

13

Redo some transaction that didn t commit
– Undo other transactions that didn’t commit

• Three kinds of logs: undo, redo, undo/redo

Undo Logging
Log records
• <START T> 

– transaction T has begun
• <COMMIT T> 

– T has committed
• <ABORT T>

14

– T has aborted
• <T,X,v>

– T has updated element X, and its old value was v

Action t Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

15

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

16

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

WHAT DO WE DO ?



5/6/2008

5

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8t:=t 2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B t) 16 16 16 8 8 <T B 8>

17

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !
WHAT DO WE DO ?

After Crash

• In the first example:In the first example:
– We UNDO both changes: A=8, B=8
– The transaction is atomic, since none of its actions has been 

executed

• In the second example
– We don’t undo anything

18

y g
– The transaction is atomic, since both it’s actions have been 

executed

Undo-Logging Rules

U1: If T modifies X then <T X v> must beU1: If T modifies X, then <T,X,v> must be 
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be 
written to disk before <COMMIT T>

19

• Hence: OUTPUTs are done early, before 
the transaction commits

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

20

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>



5/6/2008

6

Recovery with Undo Log

After system’s crash run recovery managerAfter system s crash, run recovery manager 
• Idea 1. Decide for each transaction T 

whether it is completed or not
– <START T>….<COMMIT T>….    = yes
– <START T>….<ABORT T>…….   = yes

<START T>

21

– <START T>………………………   = no
• Idea 2. Undo all modifications by 

incomplete transactions

Recovery with Undo Log

Recovery manager:Recovery manager:
• Read log from the end; cases:

<COMMIT T>:  mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

then write X=v to disk

22

then write X v to disk
else ignore

<START T>: ignore

Recovery with Undo Log
…
… Question1 in class:…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>

Quest o c ass:
Which updates are
undone ?

Question 2 in class:
How far back
do we need to

23

<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

read in the log ?

crash

Recovery with Undo Log

• Note: all undo commands are• Note: all undo commands are 
idempotent
– If we perform them a second time, no 

harm is done
E g if there is a system crash during

24

– E.g. if there is a system crash during 
recovery, simply restart recovery from 
scratch



5/6/2008

7

Recovery with Undo Log

When do we stop reading the log ?When do we stop reading the log ?
• We cannot stop until we reach the 

beginning of the log file
• This is impractical

25

Instead: use checkpointing

Checkpointing

Checkpoint the database periodicallyCheckpoint the database periodically
• Stop accepting new transactions
• Wait until all current transactions complete
• Flush log to disk
• Write a <CKPT> log record fl sh

26

• Write a <CKPT> log record, flush
• Resume transactions

Undo Recovery with 
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>

During recovery,
can stop at first
<CKPT>

other transactions

27

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

transactions T2,T3,T4,T5

Nonquiescent Checkpointing

• Problem with checkpointing: database• Problem with checkpointing: database 
freezes during checkpoint

• Would like to checkpoint while database is 
operational

• Idea: nonquiescent checkpointing

28

q p g

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active



5/6/2008

8

Nonquiescent Checkpointing

• Write a <START CKPT(T1 Tk)>• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Continue normal operation
• When all of T1,…,Tk have completed, write 

<END CKPT>

29

Undo Recovery with 
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…

During recovery,
can stop where?

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

30

…
<END CKPT>
…
…
…

later transactions
Q: why do we need 
<END CKPT> ?

Redo Logging

Log recordsLog records
• <START T> = transaction T has begun
• <COMMIT T> = T has committed
• <ABORT T>= T has aborted
• <T X > T has pdated element X and its

31

• <T,X,v>= T has updated element X, and its 
new value is v

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

32

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16



5/6/2008

9

Redo-Logging Rules

R1: If T modifies X then both <T X v> andR1: If T modifies X, then both <T,X,v> and 
<COMMIT T> must be written to disk 
before OUTPUT(X)

33

• Hence: OUTPUTs are done late

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

34

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Recovery with Redo Log

After system’s crash run recovery managerAfter system s crash, run recovery manager 
• Step 1. Decide for each transaction T 

whether it is completed or not
– <START T>….<COMMIT T>….    = yes
– <START T>….<ABORT T>…….    = yes

<START T>

35

– <START T>………………………   = no
• Step 2. Read log from the beginning, redo 

all updates of committed transactions

Recovery with Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

36

…
…



5/6/2008

10

Nonquiescent Checkpointing

• Write a <START CKPT(T1 Tk)>• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Flush to disk all blocks of committed 
transactions (dirty blocks), while continuing 
normal operation

37

• When all blocks have been written, write 
<END CKPT>

Redo Recovery with 
Nonquiescent Checkpointing

…
<START T1><START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
i iAll OUTPUTs 

38

…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

ignoring
transactions
committed
earlier

of T1 are
known to be on disk

Cannot
use

Comparison Undo/Redo
• Undo logging:U do ogg g:

– OUTPUT must be done early
– If <COMMIT T> is seen, T definitely has written all its data to 

disk (hence, don’t need to redo) – inefficient
• Redo logging

– OUTPUT must be done late
– If <COMMIT T> is not seen, T definitely has not written any of its 

data to disk (hence there is not dirty data on disk, no need to undo)

39

data to disk (hence there is not dirty data on disk, no need to undo) 
– inflexible

• Would like more flexibility on when to OUTPUT: 
undo/redo logging (next)

Undo/Redo Logging

Log records only one changeLog records, only one change
• <T,X,u,v>= T has updated element X, its 

old value was u, and its new value is v

40



5/6/2008

11

Undo/Redo-Logging Rule

UR1: If T modifies X then <T X u v> mustUR1: If T modifies X, then <T,X,u,v> must 
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late 
relative to <COMMIT T>

41

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

42

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

Recovery with Undo/Redo Log

After system’s crash run recovery managerAfter system s crash, run recovery manager 
• Redo all committed transaction, top-down
• Undo all uncommitted transactions, bottom-up

43

Recovery with Undo/Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

44

…
…


