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Introduction to Database Systems
CSE 444

Lectures 15-16:
Recovery

May 7-9, 2008
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Announcements

Homework 3:Homework 3:
• Attributes v.s. elements: /item v.s. /@item
• Data is not clean

– OK to return any sensible answer, no need to clean 
• See the two examples in the mini-tutorial (e.g 

f t i )

2

fn:string)
• Check the lecture notes (e.g. for group-by)
• If query doesn’t work, try a simpler one to debug

Outline

• Undo logging 17 2• Undo logging 17.2
• Redo logging 17.3
• Redo/undo 17.4
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Transaction Management

Two parts:Two parts:

• Recovery from crashes:  ACID
• Concurrency control:      ACID
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Both operate on the buffer pool
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Recovery

From which of the events below can aFrom which of the events below can a 
database actually recover ?

• Wrong data entry
• Disk failure
• Fire / earthquake / bankrupcy /
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• Fire / earthquake / bankrupcy / ….
• Systems crashes

Recovery
Type of Crash Prevention

Wrong data entry Constraints and
Data cleaning

Disk crashes Redundancy: 
e.g. RAID, archive
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Fire, theft, 
bankruptcy…

Buy insurance, 
Change jobs…

System failures:
e.g. power

DATABASE
RECOVERY

Most
frequent

System Failures

• Each transaction has internal state• Each transaction has internal state
• When system crashes, internal state is lost

– Don’t know which parts executed and which 
didn’t

• Remedy: use a log
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– A file that records every single action of the 

transaction

Transactions

• Assumption: the database is composed ofAssumption: the database is composed of 
elements
– Usually 1 element = 1 block
– Can be smaller (=1 record) or larger (=1 

relation)
• Assumption: each transaction reads/writes
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• Assumption: each transaction reads/writes 
some elements
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Primitive Operations of 
Transactions

• READ(X t)READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)
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– read element X to memory buffer
• OUTPUT(X)

– write element X to disk

Example
START TRANSACTION
READ(A,t); 
t := t*2;
WRITE(A,t); 
READ(B,t); 

Atomicity:
BOTH A and B
are multiplied by 2
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( , );
t := t*2;
WRITE(B,t)
COMMIT;

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t)

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8
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READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8t:=t 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B t) 16 16 16 8 8
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WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity
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The Log

• An append only file containing log records• An append-only file containing log records
• Note: multiple transactions run 

concurrently, log records are interleaved
• After a system crash, use log to:

– Redo some transaction that didn’t commit
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Redo some transaction that didn t commit
– Undo other transactions that didn’t commit

• Three kinds of logs: undo, redo, undo/redo

Undo Logging
Log records
• <START T> 

– transaction T has begun
• <COMMIT T> 

– T has committed
• <ABORT T>
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– T has aborted
• <T,X,v>

– T has updated element X, and its old value was v

Action t Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

15

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
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WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

WHAT DO WE DO ?
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Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8t:=t 2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B t) 16 16 16 8 8 <T B 8>
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WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !
WHAT DO WE DO ?

After Crash

• In the first example:In the first example:
– We UNDO both changes: A=8, B=8
– The transaction is atomic, since none of its actions has been 

executed

• In the second example
– We don’t undo anything
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– The transaction is atomic, since both it’s actions have been 

executed

Undo-Logging Rules

U1: If T modifies X then <T X v> must beU1: If T modifies X, then <T,X,v> must be 
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be 
written to disk before <COMMIT T>
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• Hence: OUTPUTs are done early, before 
the transaction commits

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
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WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
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Recovery with Undo Log

After system’s crash run recovery managerAfter system s crash, run recovery manager 
• Idea 1. Decide for each transaction T 

whether it is completed or not
– <START T>….<COMMIT T>….    = yes
– <START T>….<ABORT T>…….   = yes

<START T>
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– <START T>………………………   = no
• Idea 2. Undo all modifications by 

incomplete transactions

Recovery with Undo Log

Recovery manager:Recovery manager:
• Read log from the end; cases:

<COMMIT T>:  mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

then write X=v to disk
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then write X v to disk
else ignore

<START T>: ignore

Recovery with Undo Log
…
… Question1 in class:…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>

Quest o c ass:
Which updates are
undone ?

Question 2 in class:
How far back
do we need to
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<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

read in the log ?

crash

Recovery with Undo Log

• Note: all undo commands are• Note: all undo commands are 
idempotent
– If we perform them a second time, no 

harm is done
E g if there is a system crash during
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– E.g. if there is a system crash during 
recovery, simply restart recovery from 
scratch
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Recovery with Undo Log

When do we stop reading the log ?When do we stop reading the log ?
• We cannot stop until we reach the 

beginning of the log file
• This is impractical
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Instead: use checkpointing

Checkpointing

Checkpoint the database periodicallyCheckpoint the database periodically
• Stop accepting new transactions
• Wait until all current transactions complete
• Flush log to disk
• Write a <CKPT> log record fl sh
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• Write a <CKPT> log record, flush
• Resume transactions

Undo Recovery with 
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>

During recovery,
can stop at first
<CKPT>

other transactions
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<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

transactions T2,T3,T4,T5

Nonquiescent Checkpointing

• Problem with checkpointing: database• Problem with checkpointing: database 
freezes during checkpoint

• Would like to checkpoint while database is 
operational

• Idea: nonquiescent checkpointing

28

q p g

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active
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Nonquiescent Checkpointing

• Write a <START CKPT(T1 Tk)>• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Continue normal operation
• When all of T1,…,Tk have completed, write 

<END CKPT>
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Undo Recovery with 
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…

During recovery,
can stop where?

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6
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…
<END CKPT>
…
…
…

later transactions
Q: why do we need 
<END CKPT> ?

Redo Logging

Log recordsLog records
• <START T> = transaction T has begun
• <COMMIT T> = T has committed
• <ABORT T>= T has aborted
• <T X > T has pdated element X and its
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• <T,X,v>= T has updated element X, and its 
new value is v

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>
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<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
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Redo-Logging Rules

R1: If T modifies X then both <T X v> andR1: If T modifies X, then both <T,X,v> and 
<COMMIT T> must be written to disk 
before OUTPUT(X)
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• Hence: OUTPUTs are done late

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>
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<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Recovery with Redo Log

After system’s crash run recovery managerAfter system s crash, run recovery manager 
• Step 1. Decide for each transaction T 

whether it is completed or not
– <START T>….<COMMIT T>….    = yes
– <START T>….<ABORT T>…….    = yes

<START T>
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– <START T>………………………   = no
• Step 2. Read log from the beginning, redo 

all updates of committed transactions

Recovery with Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

36

…
…
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Nonquiescent Checkpointing

• Write a <START CKPT(T1 Tk)>• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Flush to disk all blocks of committed 
transactions (dirty blocks), while continuing 
normal operation
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• When all blocks have been written, write 
<END CKPT>

Redo Recovery with 
Nonquiescent Checkpointing

…
<START T1><START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
i iAll OUTPUTs 
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…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

ignoring
transactions
committed
earlier

of T1 are
known to be on disk

Cannot
use

Comparison Undo/Redo
• Undo logging:U do ogg g:

– OUTPUT must be done early
– If <COMMIT T> is seen, T definitely has written all its data to 

disk (hence, don’t need to redo) – inefficient
• Redo logging

– OUTPUT must be done late
– If <COMMIT T> is not seen, T definitely has not written any of its 

data to disk (hence there is not dirty data on disk, no need to undo)
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data to disk (hence there is not dirty data on disk, no need to undo) 
– inflexible

• Would like more flexibility on when to OUTPUT: 
undo/redo logging (next)

Undo/Redo Logging

Log records only one changeLog records, only one change
• <T,X,u,v>= T has updated element X, its 

old value was u, and its new value is v

40
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Undo/Redo-Logging Rule

UR1: If T modifies X then <T X u v> mustUR1: If T modifies X, then <T,X,u,v> must 
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late 
relative to <COMMIT T>
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Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
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OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

Recovery with Undo/Redo Log

After system’s crash run recovery managerAfter system s crash, run recovery manager 
• Redo all committed transaction, top-down
• Undo all uncommitted transactions, bottom-up
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Recovery with Undo/Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
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…
…


