
4/30/2008

1

Introduction to Database Systems
CSE 444

Lecture 13
Security

May 2, 2008

1

y ,

Outline

SQL Security 8 7SQL Security – 8.7

Two famous attacks

T o ne trends

Optional material;
May not have time to cover
in class

2

Two new trends

Discretionary Access Control in
SQL

GRANT i ilGRANT privileges
ON object
TO users
[WITH GRANT OPTIONS]

privileges = SELECT |

3

INSERT(column-name) |
UPDATE(column-name) |
DELETE |
REFERENCES(column-name)

object = table | attribute

Examples

GRANT INSERT DELETE ON CustomersGRANT INSERT, DELETE ON Customers
TO Yuppy WITH GRANT OPTIONS

Queries allowed to Yuppy:
INSERT INTO Customers(cid, name, address)

VALUES(32940, ‘Joe Blow’, ‘Seattle’)

4

Queries denied to Yuppy:

DELETE Customers
WHERE LastPurchaseDate < 1995

SELECT Customer.address
FROM Customer
WHERE name = ‘Joe Blow’

4/30/2008

2

Examples

GRANT SELECT ON Customers TO Michael

Now Michael can SELECT, but not INSERT or DELETE

5

Examples

GRANT SELECT ON Customers
TO Michael WITH GRANT OPTIONS

Michael can say this:
GRANT SELECT ON Customers TO Yuppy

6

GRANT SELECT ON Customers TO Yuppy

Now Yuppy can SELECT on Customers

Examples

GRANT UPDATE (price) ON Product TO Leah

Leah can update, but only Product.price, but not Product.name

7

Examples
Customer(cid, name, address, balance)(, , ,)
Orders(oid, cid, amount) cid= foreign key

Bill has INSERT/UPDATE rights to Orders.
BUT HE CAN’T INSERT ! (why ?)

8

GRANT REFERENCES (cid) ON Customer TO Bill

Now Bill can INSERT tuples into Orders

4/30/2008

3

Views and SecurityDavid owns

Customers:
Fred is not
allowed to

David says

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25

Customers: see this

9

CREATE VIEW PublicCustomers
SELECT Name, Address
FROM Customers

GRANT SELECT ON PublicCustomers TO Fred

Ann Portland -520

Views and Security
David owns

Customers: John is
allowed to

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520 David says

allowed to
see only <0

balances

10

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE Balance < 0

GRANT SELECT ON BadCreditCustomers TO John

Views and Security
• Each customer should see only her/his record

David says

CREATE VIEW CustomerMary
SELECT * FROM Customers
WHERE name = ‘Mary’

GRANT SELECT
ON CustomerMary TO Mary

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
A P l d 520 CREATE VIEW CustomerSue

11

Doesn’t scale.

Need row-level access control !

Ann Portland -520 CREATE VIEW CustomerSue
SELECT * FROM Customers
WHERE name = ‘Sue’

GRANT SELECT
ON CustomerSue TO Sue

. . .

Revocation

REVOKE [GRANT OPTION FOR] privileges
ON object FROM users { RESTRICT | CASCADE }

Administrator says:

12

y

REVOKE SELECT ON Customers FROM David CASCADE

John loses SELECT privileges on BadCreditCustomers

4/30/2008

4

Revocation
Joe: GRANT [….] TO Art …

Same privilege,
same object,[]

Art: GRANT [….] TO Bob …
Bob: GRANT [….] TO Art …
Joe: GRANT [….] TO Cal …
Cal: GRANT [….] TO Bob …
Joe: REVOKE [….] FROM Art CASCADE

same object,
GRANT OPTION

13

What happens ??

Revocation

Admin

Joe Art

0

1

24

Revoke

14

Cal Bob

234

5

According to SQL everyone keeps the privilege

Summary of SQL Security

Limitations:Limitations:
• No row level access control
• Table creator owns the data: that’s unfair !

Access control = great success story of the DB community...

15

… or spectacular failure:
• Only 30% assign privileges to users/roles

– And then to protect entire tables, not columns

Summary (cont)

• Most policies in middleware: slow error prone:Most policies in middleware: slow, error prone:
– SAP has 10**4 tables
– GTE over 10**5 attributes
– A brokerage house has 80,000 applications
– A US government entity thinks that it has 350K

• Today the database is not at the center of the policy

16

Today the database is not at the center of the policy
administration universe

[Rosenthal&Winslett’2004]

4/30/2008

5

Two Famous Attacks

• SQL injection• SQL injection
• Sweeney’s example

17

SQL Injection
Your health insurance company lets you see the claims online:

[Chris Anley, Advanced SQL Injection In SQL]

Now search through the claims :

First login: User:

Password:

fred

18

Search claims by: Dr. Lee

SELECT…FROM…WHERE doctor=‘Dr. Lee’ and patientID=‘fred’

SQL Injection
Now try this:

Search claims by: Dr. Lee’ OR patientID = ‘suciu’; --

Better:

…..WHERE doctor=‘Dr. Lee’ OR patientID=‘suciu’; --’ and patientID=‘fred’

19

Better:

Search claims by: Dr. Lee’ OR 1 = 1; --

SQL Injection
When you’re done, do this:

Search claims by: Dr. Lee’; DROP TABLE Patients; --

20

4/30/2008

6

SQL Injection

• The DBMS works perfectly So why is• The DBMS works perfectly. So why is
SQL injection possible so often ?

• Quick answer:
– Poor programming: use stored procedures !

21

Poor programming: use stored procedures !
• Deeper answer:

– Move policy implementation from apps to DB

Latanya Sweeney’s Finding

• In Massachusetts the Group Insurance• In Massachusetts, the Group Insurance
Commission (GIC) is responsible for
purchasing health insurance for state
employees

• GIC has to publish the data:

22

GIC(zip, dob, sex, diagnosis, procedure, ...)

Latanya Sweeney’s Finding

• Sweeney paid $20 and bought the voter• Sweeney paid $20 and bought the voter
registration list for Cambridge
Massachusetts:

23

GIC(zip, dob, sex, diagnosis, procedure, ...)
VOTER(name, party, ..., zip, dob, sex)

Latanya Sweeney’s Finding

i d b

• William Weld (former governor) lives in
Cambridge, hence is in VOTER

• 6 people in VOTER share his dob
l 3 f h ()

zip, dob, sex

24

• only 3 of them were man (same sex)
• Weld was the only one in that zip
• Sweeney learned Weld’s medical records !

4/30/2008

7

Latanya Sweeney’s Finding

• All systems worked as specified yet an• All systems worked as specified, yet an
important data has leaked

• How do we protect against that ?

25

• How do we protect against that ?

Some of today’s research in data security address breaches
that happen even if all systems work correctly

Summary on Attacks

SQL injection:SQL injection:
• A correctness problem:

– Security policy implemented poorly in the application

Sweeney’s finding:
• Beyond correctness:

26

– Leakage occurred when all systems work as specified

Two Novel Techniques

• K anonymity information leakage• K-anonymity, information leakage
• Row-level access control

27

Information Leakage:
k-Anonymity

Definition: each tuple is equal to at least k-1 others

[Samarati&Sweeney’98, Meyerson&Williams’04]

First Last Age Race
Harry Stone 34 Afr-Am
John Reyser 36 Cauc

First Last Age Race
* Stone 30-50 Afr-Am

John R* 20-40 *

Anonymizing: through suppression and generalization

Disease
Flue

Measels

28

Beatrice Stone 47 Afr-am
John Ramos 22 Hisp

* Stone 30-50 Afr-am
John R* 20-40 *

Hard: NP-complete for suppression only
Approximations exists; but work poorly in practice

Pain
Fever

4/30/2008

8

Information Leakage:
Query-view Security

TABLE Employee(name dept phone)Have data:

[Miklau&S’04, Miklau&Dalvi&S’05,Yang&Li’04]

Secret Query View(s) Disclosure ?
S(name) V(name,phone)

S(name,phone) V1(name,dept)
V2(d h)

TABLE Employee(name, dept, phone)Have data:

total

big

29

S(name,phone) V2(dept,phone)
S(name) V(dept)
S(name)

where dept=‘HR’
V(name)

where dept=‘RD’

g

tiny

none

Fine-grained Access Control

Control access at the tuple levelControl access at the tuple level.

• Policy specification languages
• Implementation

30

Policy Specification Language
No standard, but usually based on parameterized views.

CREATE AUTHORIZATION VIEW PatientsForDoctors AS
SELECT Patient.*
FROM Patient, Doctor
WHERE Patient.doctorID = Doctor.ID

and Doctor.login = %currentUser

31

Context
parameters

Implementation
SELECT Patient.name, Patient.age
FROM PatientFROM Patient
WHERE Patient.disease = ‘flu’

SELECT Patient.name, Patient.age

32

g
FROM Patient, Doctor
WHERE Patient.disease = ‘flu’

and Patient.doctorID = Doctor.ID
and Patient.login = %currentUser

e.g. Oracle

4/30/2008

9

Two Semantics
• The Truman Model = filter semanticse u a ode te se a t cs

– transform reality
– ACCEPT all queries
– REWRITE queries
– Sometimes misleading results

• The non-Truman model = deny semantics
j t i

SELECT count(*)
FROM Patients
WHERE disease=‘flu’

33

– reject queries
– ACCEPT or REJECT queries
– Execute query UNCHANGED
– May define multiple security views for a user

[Rizvi’04]

Summary on Information
Disclosure

• The theoretical research:• The theoretical research:
– Exciting new connections between databases

and information theory, probability theory,
cryptography [Abadi&Warinschi’05]

34

• The applications:
– many years away

Summary of Fine Grained Access
Control

• Trend in industry: label-based securityTrend in industry: label-based security
• Killer app: application hosting

– Independent franchises share a single table at
headquarters (e.g., Holiday Inn)

– Application runs under requester’s label, cannot
see other labels

35

see other labels
– Headquarters runs Read queries over them

• Oracle’s Virtual Private Database

[Rosenthal&Winslett’2004]

