Introduction to Database Systems CSE 444

Lectures 8 \& 9
Database Design
April 16 \& 18, 2008

Schema Refinements $=$ Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

Outline

- The relational data model: 3.1
- Functional dependencies: 3.4

First Normal Form (1NF)

- A database schema is in First Normal Form if all tables are flat

Student

Student

Name	GPA	Courses			
		Math	\quad	Alice	3.8
:---:	:---:				
Bob	3.7				
Carol	3.9				

Relational Schema Design

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city
Anomalies:

- Redundancy = repeated data
- Update anomalies $=$ Fred moves to "Bellevue"
- Deletion anomalies $=$ Joe deletes his phone number:
what is his city? 7

Data Anomalies

When a database is poorly designed we get anomalies:
Redundancy: data is repeated

Update anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

Relation Decomposition

Break the relation into two:

	Name Fred Fred Joe	SSN	PhoneNumber	City
		123-45-6789	206-555-1234	
		123-45-6789	206-555-6543	
		987-65-4321	908-555-2121	
Name	SSN	City	SSN	PhoneNumber
Fred	123-45-6789	Seattle	123-45-6789	206-555-1234
Joe	987-65-4321	Westfield	123-45-6789	206-555-6543
	are go		987-65-4321	908-555-2121

Anomalies are gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how?)
- Easy to delete all Joe's phone numbers (how?)

Relational Schema Design

(or Logical Design)
Main idea:

- Start with some relational schema
- Find out its functional dependencies
- Use them to design a better relational schema

Functional Dependencies

- A form of constraint
- hence, part of the schema
- Finding them is part of the database design
- Also used in normalizing the relations

Functional Dependencies

Definition:

If two tuples agree on the attributes

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}
$$

then they must also agree on the attributes

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Formally:

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

When Does an FD Hold

Definition: $\quad A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:
$\forall t, t^{\prime} \in R,\left(t . A_{1}=t^{\prime} . A_{1} \wedge \ldots \wedge t . A_{m}=t^{\prime} . A_{m} \Rightarrow t \cdot B_{1}=t^{\prime} . B_{1} \wedge \ldots \wedge t . B_{n}=t^{\prime} . B_{n}\right)$

Examples

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	$9876 \leftarrow$	Salesrep
E1111	Smith	$9876 \leftarrow$	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

Example

$\xrightarrow{\rightarrow}$

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

but not Phone \rightarrow Position
name \rightarrow color
category \rightarrow department color, category \rightarrow price

- On some instances they hold
- On others they don't

Example

FD's are constraints:

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs ?

An Interesting Observation

If all these FDs are true:	name \rightarrow color category \rightarrow department color, category \rightarrow price
Then this FD also holds:	name, category \rightarrow price

Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find all FDs, then look for the bad ones

Armstrong's Rules (1/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Is equivalent to
Splitting rule
and
Combing rule

$$
\begin{gathered}
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1} \\
\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{2} \\
\ldots \ldots \\
\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{\mathrm{m}}
\end{gathered}
$$

Armstrong's Rules (1/3)

```
A},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}->\mp@subsup{A}{i}{}\quad\mathrm{ Trivial Rule
    where i = 1, 2, ..,n
```


21

Armstrong's Rules (1/3)

Transitive Closure Rule
If

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

and

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

then

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

Why?

Example (continued)

Start from the following FDs:	1. name \rightarrow color 2. category \rightarrow department 3. color, category \rightarrow price
Infer the following FDs:	

Infer the following FDs:

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	
5. name, category \rightarrow color	
6. name, category \rightarrow category	
7. name, category \rightarrow color, category	
8. name, category \rightarrow price	

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}
The closure, $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}^{+}=$the set of attributes B s.t. $A_{1}, \ldots, A_{n} \rightarrow B$

Example:	name \rightarrow color category \rightarrow department color, category \rightarrow price
Closures:	

name $^{+}=$\{name, color $\}$
$\{\text { name, category }\}^{+}=\{$name, category, color, department, price $\}$ color $^{+}=\{$color $\}$

Closure Algorithm

```
X={A1,\ldots,An}.
Repeat until X doesn't change do:
    if }\mp@subsup{B}{1}{},\ldots,\mp@subsup{B}{n}{}->C\mathrm{ is a FD and
        B},\ldots,\mp@subsup{B}{n}{}\mathrm{ are all in X
    then add C to X
{name, category}}\mp@subsup{}{}{+}
            { name, category, color, department, price }
Hence:

\section*{Example}

In class:
\[
\mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F})
\]
\[
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & & \rightarrow \\
\mathrm{D}, \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
\]
\(\left.\begin{array}{ll}\text { Compute }\{\mathrm{A}, \mathrm{B}\}^{+} & \mathrm{X}=\{\mathrm{A}, \mathrm{B},\end{array}\right\}\)

\section*{Why Do We Need Closure}
- With closure we can find all FD's easily
- To check if \(\mathrm{X} \rightarrow \mathrm{A}\)
- Compute \(\mathrm{X}^{+}\)
- Check if \(\mathrm{A} \in \mathrm{X}^{+}\)

\section*{Using Closure to Infer ALL FDs}

Example:
\[
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\hline
\end{array}
\]

Step 1: Compute \(\mathrm{X}^{+}\), for every X :
\(\mathrm{A}+=\mathrm{A}, \mathrm{B}+=\mathrm{BD}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D}\)
\(\mathrm{AB}+=\mathrm{ABCD}, \mathrm{AC}+=\mathrm{AC}, \mathrm{AD}+=\mathrm{ABCD}\),
\[
\mathrm{BC}+=\mathrm{BCD}, \mathrm{BD}+=\mathrm{BD}, \mathrm{CD}+=\mathrm{CD}
\]
\(\mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}^{+}=\mathrm{ABCD}\) (no need to compute- why ?) \(\mathrm{BCD}^{+}=\mathrm{BCD}, \quad \mathrm{ABCD}+=\mathrm{ABCD}\)

Step 2: Enumerate all FD's \(\mathrm{X} \rightarrow \mathrm{Y}\), s.t. \(\mathrm{Y} \subseteq \mathrm{X}^{+}\)and \(\mathrm{X} \cap \mathrm{Y}=\varnothing\) : \(\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{B} \quad 30\)

\section*{Another Example}
- Enrollment(student, major, course, room, time)
student \(\rightarrow\) major
major, course \(\rightarrow\) room
course \(\rightarrow\) time

What else can we infer? [in class, or at home]

\section*{Keys}
- A superkey is a set of attributes \(A_{1}, \ldots, A_{n}\) s.t. for any other attribute \(B\), we have \(A_{1}, \ldots, A_{n} \rightarrow B\)
- A key is a minimal superkey
- i.e. set of attributes which is a superkey and for which no subset is a superkey

\section*{Computing (Super)Keys}
- Compute \(\mathrm{X}^{+}\)for all sets X
- If \(\mathrm{X}^{+}=\)all attributes, then X is a key
- List only the minimal X's

\section*{Example}

Product(name, price, category, color)
```

name, category }->\mathrm{ price
category }->\mathrm{ color

```

What is the key?

\section*{Example}

Product(name, price, category, color)
\[
\begin{aligned}
& \text { name, category } \rightarrow \text { price } \\
& \text { category } \rightarrow \text { color } \\
& \hline
\end{aligned}
\]
(find keys at home)

\section*{Examples of Keys}

Enrollment(student, address, course, room, time)
```

student }->\mathrm{ address

```
student }->\mathrm{ address
room, time }->\mathrm{ course
room, time }->\mathrm{ course
student, course }->\mathrm{ room, time
```

student, course }->\mathrm{ room, time

```

\section*{Eliminating Anomalies}

Main idea:
- \(\mathrm{X} \rightarrow \mathrm{A}\) is OK if X is a (super)key
- \(\mathrm{X} \rightarrow \mathrm{A}\) is not OK otherwise

\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline Name & SSN & PhoneNumber & City \\
\hline Fred & \(123-45-6789\) & \(206-555-1234\) & Seattle \\
\hline Fred & \(123-45-6789\) & \(206-555-6543\) & Seattle \\
\hline Joe & \(987-65-4321\) & \(908-555-2121\) & Westfield \\
\hline Joe & \(987-65-4321\) & \(908-555-1234\) & Westfield \\
\hline
\end{tabular}

SSN \(\rightarrow\) Name, City

What the key?
\{SSN, PhoneNumber\} Hence SSN \(\rightarrow\) Name, City is a "bad" dependency 38

\section*{Key or Keys?}

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

\section*{Key or Keys?}

Can we have more than one key?

Given \(\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C})\) define FD's s.t. there are two or more keys

what are the keys here?
Can you design FDs such that there are three keys?

\section*{Boyce-Codd Normal Form}

A simple condition for removing anomalies from relations:
```

A relation R is in BCNF if:
If }\mp@subsup{A}{1}{},···,\mp@subsup{A}{n}{}->B\mathrm{ is a non-trivial dependency
in R, then {\mp@subsup{A}{1}{},···,\mp@subsup{A}{n}{}}\mathrm{ is a superkey for R}

```

In other words: there are no "bad" FDs

Equivalently:
\[
\forall \mathrm{X}, \text { either }\left(\mathrm{X}^{+}=\mathrm{X}\right) \quad \text { or } \quad\left(\mathrm{X}^{+}=\text {all attributes }\right)
\]

\section*{BCNF Decomposition Algorithm}

\section*{repeat}
choose \(A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}\) that violates \(B N C F\)
split \(R\) into \(R_{1}\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)\) and \(R_{2}\left(A_{1}, \ldots, A_{m}\right.\), [others] \()\) continue with both \(R_{1}\) and \(R_{2}\)
until no more violations


\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline Name & SSN & PhoneNumber & City \\
\hline Fred & \(123-45-6789\) & \(206-555-1234\) & Seattle \\
\hline Fred & \(123-45-6789\) & \(206-555-6543\) & Seattle \\
\hline Joe & \(987-65-4321\) & \(908-555-2121\) & Westfield \\
\hline Joe & \(987-65-4321\) & \(908-555-1234\) & Westfield \\
\hline
\end{tabular}

\section*{SSN \(\rightarrow\) Name, City}

What the key?
\{SSN, PhoneNumber\} use SSN \(\rightarrow\) Name, City
to split

\section*{Example}
\begin{tabular}{|l|l|l|}
\hline Name & SSN & City \\
\cline { 1 - 2 } Fred & \(123-45-6789\) & Seattle \\
\hline JSN \(\rightarrow\) Name, City \\
\hline Joe & \(987-65-4321\) & Westfield \\
& &
\end{tabular}
\begin{tabular}{|l|l|}
\hline SSN & PhoneNumber \\
\hline \(123-45-6789\) & \(206-555-1234\) \\
\hline \(123-45-6789\) & \(206-555-6543\) \\
\hline \(987-65-4321\) & \(908-555-2121\) \\
\hline \(987-65-4321\) & \(908-555-1234\) \\
\hline
\end{tabular}

Let's check anomalies:
- Redundancy?
- Update ?
- Delete?

\section*{Example Decomposition}

Person(name, SSN, age, hairColor, phoneNumber) SSN \(\rightarrow\) name, age
age \(\rightarrow\) hairColor
Decompose in BCNF (in class):

Find X s.t.: \(\mathrm{X} \neq \mathrm{X}^{+} \neq[\)all attributes \(]\)

\section*{Example BCNF Decomposition}

Person(name, SSN, age, hairColor, phoneNumber)
SSN \(\rightarrow\) name, age
age \(\rightarrow\) hairColor

\section*{Iteration 1: Person}

SSN \(+=\) SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P
age \(+=\) age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)
47

\section*{BCNF Decomposition Algorithm}

\section*{BCNF_Decompose(R)}
find X s.t.: \(\mathrm{X} \neq \mathrm{X}^{+} \neq[\)all attributes \(]\)
if (not found) then " \(R\) is in BCNF"
let \(\mathrm{Y}=\mathrm{X}^{+}\)- X
let \(\mathrm{Z}=\) [all attributes \(]-\mathrm{X}^{+}\)
decompose R into \(\mathrm{R} 1(\mathrm{X} \cup \mathrm{Y})\) and \(\mathrm{R} 2(\mathrm{X} \cup \mathrm{Z})\)
continue to decompose recursively R1 and R2


What happens if in R we first pick \(\mathrm{B}^{+}\)? Or \(\mathrm{AB}_{48}^{+}\)?


\section*{Theory of Decomposition}
- Sometimes it is correct:


Lossless decomposition

\section*{Incorrect Decomposition}
- Sometimes it is not:


\section*{Decompositions in General}

```

If }\mp@subsup{\textrm{A}}{1}{},···,\mp@subsup{\textrm{A}}{\textrm{n}}{}->\mp@subsup{\textrm{B}}{1}{},···,\mp@subsup{B}{m}{
Then the decomposition is lossless

```

Note: don't need \(A_{1}, \ldots, A_{n} \rightarrow C_{1}, \ldots, C_{p}\)```

