Lecture 22: Query Optimization

Outline

- An example
- Query optimization: algebraic laws 16.2
- Cost-based optimization 16.5, 16.6
- Cost estimation: 16.4
Example

Product(pname, maker), Company(cname, city)

Select Product.pname
From Product, Company
Where Product.maker = Company.cname
and Company.city = “Seattle”

• How do we execute this query?
Example

Product(pname, maker), **Company**(cname, city)

Assume:

Clustered index: **Product**.pname, **Company**.cname
Unclustered index: **Product**.maker, **Company**.city
Logical Plan:

\[\sigma_{\text{city}=\text{“Seattle”}} \times \text{maker=cname} \]

Product
(pname,maker)

Company
(cname,city)
Physical plan 1:

\[\sigma_{\text{city}=\text{"Seattle"}} \]

\[\times \]

\[\text{cname=} \text{maker} \]

\[\text{Company} \quad (\text{cname}, \text{city}) \]

\[\text{Product} \quad (\text{pname}, \text{maker}) \]
Physical plans 2a and 2b:

Which one is better??

\[\sigma_{\text{city}=\text{"Seattle"}} \]

Product \((\text{pname}, \text{maker}) \)

Company \((\text{cname}, \text{city}) \)

- Scan and sort (2a)
- Index scan (2b)

Merge-join
Physical plan 1:

\[\sigma_{\text{city}=\text{“Seattle”}} \times T(\text{Company}) / V(\text{Company}, \text{city}) \times T(\text{Product}) / V(\text{Product}, \text{maker}) \]

\[\times T(\text{Product}) / V(\text{Product}, \text{maker}) \]

Total cost:
\[T(\text{Company}) / V(\text{Company}, \text{city}) \times T(\text{Product}) / V(\text{Product}, \text{maker}) \]
Physical plans 2a and 2b:

No extra cost (why?)

Product
pname, maker)

Company
cname, city)

Scan and sort (2a)
index scan (2b)

merge-join

σ

city=“Seattle”

T(Product)

B(Company)

3B(Product)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)
Plan 1: \[T(\text{Company})/V(\text{Company}, \text{city}) \times T(\text{Product})/V(\text{Product}, \text{maker}) \]

Plan 2a: \[B(\text{Company}) + 3B(\text{Product}) \]

Plan 2b: \[B(\text{Company}) + T(\text{Product}) \]

Which one is better ??

It depends on the data !!
Example

<table>
<thead>
<tr>
<th>T(Company) = 5,000</th>
<th>B(Company) = 500</th>
<th>M = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(Product) = 100,000</td>
<td>B(Product) = 1,000</td>
<td></td>
</tr>
</tbody>
</table>

We may assume $V(\text{Product}, \text{maker}) \approx T(\text{Company})$ (why ?)

- Case 1: $V(\text{Company}, \text{city}) \approx T(\text{Company})$

 \[V(\text{Company}, \text{city}) = 2,000\]

- Case 2: $V(\text{Company}, \text{city}) \ll T(\text{Company})$

 \[V(\text{Company}, \text{city}) = 20\]
Which Plan is Best?

Plan 1: $T(Company)/V(Company,city) \times T(Product)/V(Product,maker)$
Plan 2a: $B(Company) + 3B(Product)$
Plan 2b: $B(Company) + T(Product)$

Case 1:

Case 2:
Lessons

• Need to consider several physical plan
 – even for one, simple logical plan
• No magic “best” plan: depends on the data
• In order to make the right choice
 – need to have statistics over the data
 – the B’s, the T’s, the V’s
Query Optimization

• Have a SQL query Q

• Create a plan P

• Find equivalent plans \(P = P' = P'' = \ldots \)

• Choose the “cheapest”.

HOW ??
Logical Query Plan

```
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
    P.city='seattle' AND
    Q.phone > '5430000'
```

In class:
find a “better” plan P'

$P=$

```
\prod_{\text{buyer}}
```

σ

```
\text{City='seattle'} \land \text{phone} > '5430000'
```

\bowtie

```
\text{Buyer=name}
```

Purchase Person

$\text{Purchasse(buyer, city)}$

$\text{Person(name, phone)}$
Logical Query Plan

Q =

\[
\begin{align*}
\text{SELECT } & \text{city, sum(quantity)} \\
\text{FROM } & \text{sales} \\
\text{GROUP BY } & \text{city} \\
\text{HAVING } & \text{sum(quantity) < 100}
\end{align*}
\]

P =

\[
\begin{align*}
T1(\text{city}, p) \\
\sigma_{p < 100} \\
T2(\text{city}, p) \\
\gamma_{\text{city, sum(quantity)}} \\
\text{sales(} \text{product, city, quantity})
\end{align*}
\]

In class:
find a “better” plan P’
The three components of an optimizer

We need three things in an optimizer:

• Algebraic laws
• An optimization algorithm
• A cost estimator
Algebraic Laws (incomplete list)

• Commutative and Associative Laws
 \[R \cup S = S \cup R, \quad R \cup (S \cup T) = (R \cup S) \cup T \]
 \[R \times S = S \times R, \quad R \times (S \times T) = (R \times S) \times T \]

• Distributive Laws
 \[R \times (S \cup T) = (R \times S) \cup (R \times T) \]
Algebraic Laws (incomplete list)

• Laws involving selection:
 \[\sigma_{C \text{ AND } C'}(R) = \sigma_C(\sigma_{C'}(R)) \]
 \[\sigma_{C \text{ OR } C'}(R) = \sigma_C(R) \cup \sigma_{C'}(R) \]

• When C involves only attributes of R
 \[\sigma_C(R \times S) = \sigma_C(R) \times S \]
 \[\sigma_C(R - S) = \sigma_C(R) - S \]
 \[\sigma_C(R \div S) = \sigma_C(R) \div S \]
Algebraic Laws

• Example: \(R(A, B, C, D), S(E, F, G) \)

\[\sigma_{F=3} (R \mid \times \mid_{D=E} S) = \]
\[\sigma_{A=5 \text{ AND } G=9} (R \mid \times \mid_{D=E} S) = \]
Algebraic Laws

• Laws involving projections

\[\Pi_M(R \times S) = \Pi_M(\Pi_P(R) \times \Pi_Q(S)) \]
\[\Pi_M(\Pi_N(R)) = \Pi_{M,N}(R) \]

• Example \(R(A,B,C,D), S(E, F, G) \)

\[\Pi_{A,B,G}(R \times_{D=E} S) = \Pi_{?}(\Pi_{?}(R) \times_{D=E} \Pi_{?}(S)) \]
Algebraic Laws

• Laws involving grouping and aggregation:
 \[\delta(\gamma_A, \text{agg}(B)(R)) = \gamma_A, \text{agg}(B)(R) \]
 \[\gamma_A, \text{agg}(B)(\delta(R)) = \gamma_A, \text{agg}(B)(R) \text{ if agg is “duplicate insensitive”} \]

• Which of the following are “duplicate insensitive”?
 sum, count, avg, min, max

\[\gamma_A, \text{agg}(D)(R(A,B) \mid \times \mid_{B=C} S(C,D)) = \gamma_A, \text{agg}(D)(R(A,B) \mid \times \mid_{B=C} (\gamma_C, \text{agg}(D)S(C,D))) \]
Cost-based Optimizations

- Main idea: apply algebraic laws, until estimated cost is minimal
- Practically: start from partial plans, introduce operators one by one
 - Will see in a few slides
- Problem: there are too many ways to apply the laws, hence too many (partial) plans
Cost-based Optimizations

Approaches:

• **Top-down**: the partial plan is a top fragment of the logical plan

• **Bottom up**: the partial plan is a bottom fragment of the logical plan
Dynamic Programming

Originally proposed in System R (the first research prototype for a relational database system -- late 70s)

• Only handles single block queries:

```sql
SELECT list
FROM list
WHERE cond_1 AND cond_2 AND \ldots AND cond_k
```

• Heuristics: selections down, projections up
• Dynamic programming: \textit{join reordering}
Join Trees

- $R_1 \times R_2 \times \ldots \times R_n$
- Join tree:

```
  / \  \\
 R3  /  \  \\
   \  /  \  \\
    R1  R2  R4
```

- A plan = a join tree
- A partial plan = a subtree of a join tree
Types of Join Trees

• Left deep:

```
  R1
 /   \
R3  R5  \\
     /   R2
    /     \\
   R4     
```

Types of Join Trees

• Bushy:

```
      /
     /\    /
    /  \  /  \
   /    \ /    \
 R3    R2 R4
   \    /    \
    \  /      \
     \|       \
      R1      R5
```
Types of Join Trees

• Right deep:

```
R3
 / \
|   |
R1 - R5
 /     |
|       |
R2 - R4
```
Dynamic Programming

• Given: a query $R_1 \times R_2 \times \ldots \times R_n$
• Assume we have a function cost() that gives us the cost of every join tree
• Find the best join tree for the query
Dynamic Programming

• Idea: for each subset of \{R_1, \ldots, R_n\}, compute the best plan for that subset

• In increasing order of set cardinality:
 – Step 1: for \{R_1\}, \{R_2\}, \ldots, \{R_n\}
 – Step 2: for \{R_1,R_2\}, \{R_1,R_3\}, \ldots, \{R_{n-1}, R_n\}
 – …
 – Step n: for \{R_1, \ldots, R_n\}

• It is a bottom-up strategy

• A subset of \{R_1, \ldots, R_n\} is also called a subquery
Dynamic Programming

• For each subquery $Q \subseteq \{R_1, \ldots, R_n\}$ compute the following:
 – $\text{Size}(Q)$
 – A best plan for Q: $\text{Plan}(Q)$
 – The cost of that plan: $\text{Cost}(Q)$
Dynamic Programming

• **Step 1**: For each \{R_i\} do:

 – Size(\{R_i\}) = B(R_i)

 – Plan(\{R_i\}) = R_i

 – Cost(\{R_i\}) = (cost of scanning R_i)
Dynamic Programming

• **Step i**: For each $Q \subseteq \{R_1, \ldots, R_n\}$ of cardinality i do:

 – Compute $\text{Size}(Q)$ (later…)

 – For every pair of subqueries Q', Q'' s.t. $Q = Q' \cup Q''$

 compute $\text{cost}(\text{Plan}(Q') \times | \text{Plan}(Q''))$

 – $\text{Cost}(Q) = \text{the smallest such cost}$

 – $\text{Plan}(Q) = \text{the corresponding plan}$
Dynamic Programming

• Return Plan(\{R_1, \ldots, R_n\})
Dynamic Programming

To illustrate, we will make the following simplifications:

• $\text{Cost}(P_1 \times| P_2) = \text{Cost}(P_1) + \text{Cost}(P_2) + \text{size(}\text{intermediate result(s)}\text{)}$

• Intermediate results:
 – If $P_1 = \text{a join}$, then the size of the intermediate result is $\text{size}(P_1)$, otherwise the size is 0
 – Similarly for P_2

• Cost of a scan = 0
Dynamic Programming

- Example:
- $\text{Cost}(R5 \mid \times \mid R7) = 0$ (no intermediate results)
- $\text{Cost}((R2 \mid \times \mid R1) \mid \times \mid R7)$

 $= \text{Cost}(R2 \mid \times \mid R1) + \text{Cost}(R7) + \text{size}(R2 \mid \times \mid R1)$

 $= \text{size}(R2 \mid \times \mid R1)$
Dynamic Programming

• Relations: R, S, T, U
• Number of tuples: 2000, 5000, 3000, 1000
• Size estimation: $T(A \times B) = 0.01 \times T(A) \times T(B)$
<table>
<thead>
<tr>
<th>Subquery</th>
<th>Size</th>
<th>Cost</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSTU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subquery</td>
<td>Size</td>
<td>Cost</td>
<td>Plan</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>RS</td>
<td>100k</td>
<td>0</td>
<td>RS</td>
</tr>
<tr>
<td>RT</td>
<td>60k</td>
<td>0</td>
<td>RT</td>
</tr>
<tr>
<td>RU</td>
<td>20k</td>
<td>0</td>
<td>RU</td>
</tr>
<tr>
<td>ST</td>
<td>150k</td>
<td>0</td>
<td>ST</td>
</tr>
<tr>
<td>SU</td>
<td>50k</td>
<td>0</td>
<td>SU</td>
</tr>
<tr>
<td>TU</td>
<td>30k</td>
<td>0</td>
<td>TU</td>
</tr>
<tr>
<td>RST</td>
<td>3M</td>
<td>60k</td>
<td>(RT)S</td>
</tr>
<tr>
<td>RSU</td>
<td>1M</td>
<td>20k</td>
<td>(RU)S</td>
</tr>
<tr>
<td>RTU</td>
<td>0.6M</td>
<td>20k</td>
<td>(RU)T</td>
</tr>
<tr>
<td>STU</td>
<td>1.5M</td>
<td>30k</td>
<td>(TU)S</td>
</tr>
<tr>
<td>RSTU</td>
<td>30M</td>
<td>60k+50k=110k</td>
<td>(RT)(SU)</td>
</tr>
</tbody>
</table>
Reducing the Search Space

- Left-linear trees v.s. Bushy trees

- Trees without cartesian product

Example: \(R(A,B) \times S(B,C) \times T(C,D) \)

Plan: \((R(A,B) \times T(C,D)) \times S(B,C) \) has a cartesian product – most query optimizers will not consider it
Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)

- Takes exponential time in general, BUT:
 - Left linear joins may reduce time
 - Non-cartesian products may reduce time further
Rule-Based Optimizers

- **Extensible** collection of rules
 Rule = Algebraic law with a direction
- Algorithm for firing these rules
 Generate many alternative plans, in some order
 Prune by cost

- Volcano (later SQL Sever)
- Starburst (later DB2)
Completing the Physical Query Plan

• Choose algorithm to implement each operator
 – Need to account for more than cost:
 • How much memory do we have?
 • Are the input operand(s) sorted?

• Decide for each intermediate result:
 – To materialize
 – To pipeline
Materialize Intermediate Results Between Operators

HashTable $\leftarrow S$
repeat
read(R, x)
y \leftarrow join(HashTable, x)
write(V1, y)

HashTable $\leftarrow T$
repeat
read(V1, y)
z \leftarrow join(HashTable, y)
write(V2, z)

HashTable $\leftarrow U$
repeat
read(V2, z)
u \leftarrow join(HashTable, z)
write(Answer, u)
Materialize Intermediate Results Between Operators

Question in class

Given \(B(R), B(S), B(T), B(U) \)

• What is the total cost of the plan?
 – Cost =

• How much main memory do we need?
 – \(M = \)
Pipeline Between Operators

\[
\begin{align*}
\text{HashTable1} & \leftarrow S \\
\text{HashTable2} & \leftarrow T \\
\text{HashTable3} & \leftarrow U \\
\text{repeat} & \quad \text{read}(R, x) \\
& \quad y \leftarrow \text{join}(\text{HashTable1}, x) \\
& \quad z \leftarrow \text{join}(\text{HashTable2}, y) \\
& \quad u \leftarrow \text{join}(\text{HashTable3}, z) \\
& \quad \text{write}(\text{Answer}, u)
\end{align*}
\]
Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan?
 – Cost =

• How much main memory do we need?
 – M =
Pipeline in Bushy Trees
Example

• Logical plan is:

```
       k blocks
          /
         /
        R(w,x)  S(x,y)
          5,000 blocks  10,000 blocks
```

• Main memory $M = 101$ buffers
Example

\[M = 101 \]

Naïve evaluation:
- 2 partitioned hash-joins
- Cost \(3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k\)
Example

M = 101

Smarter:
- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_i in memory (50 buffer) join with S_i (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we pipeline
- Cost so far: $3B(R) + 3B(S)$
Example

$M = 101$

Continuing:
• How large are the 50 buckets on y? Answer: $k/50$.
• If $k \leq 50$ then keep all 50 buckets in Step 3 in memory, then:
 • Step 4: read U from disk, hash on y and join with memory
• Total cost: $3B(R) + 3B(S) + B(U) = 55,000$
Example

Continuing:
- If $50 < k \leq 5000$ then send the 50 buckets in Step 3 to disk
 - Each bucket has size $k/50 \leq 100$
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: $3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k$
Example

\[M = 101 \]

\[\begin{array}{c}
\text{k blocks} \\
\text{R(w,x)} \\
\text{5,000 blocks} \\
\text{S(x,y)} \\
\text{10,000 blocks} \\
\text{U(y,z)} \\
\text{10,000 blocks} \\
\end{array} \]

Continuing:
- If \(k > 5000 \) then materialize instead of pipeline
- 2 partitioned hash-joins
- Cost \(3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k \)
Example

Summary:

• If \(k \leq 50\), \(\text{cost} = 55,000\)

• If \(50 < k \leq 5000\), \(\text{cost} = 75,000 + 2k\)

• If \(k > 5000\), \(\text{cost} = 75,000 + 4k\)
Size Estimation

The problem: Given an expression E, compute T(E) and V(E, A)

• This is hard without computing E
• Will ‘estimate’ them instead
Size Estimation

Estimating the size of a projection

• Easy: $T(\Pi_L(R)) = T(R)$
• This is because a projection doesn’t eliminate duplicates
Size Estimation

Estimating the size of a selection

- \(S = \sigma_{A=c}(R) \)
 - \(T(S) \) can be anything from 0 to \(T(R) - V(R,A) + 1 \)
 - Estimate: \(T(S) = T(R)/V(R,A) \)
 - When \(V(R,A) \) is not available, estimate \(T(S) = T(R)/10 \)

- \(S = \sigma_{A<c}(R) \)
 - \(T(S) \) can be anything from 0 to \(T(R) \)
 - Estimate: \(T(S) = (c - \text{Low}(R,A))/(\text{High}(R,A) - \text{Low}(R,A))T(R) \)
 - When Low, High unavailable, estimate \(T(S) = T(R)/3 \)
Size Estimation

Estimating the size of a natural join, $R \times|_A S$

- When the set of A values are disjoint, then $T(R \times|_A S) = 0$
- When A is a key in S and a foreign key in R, then $T(R \times|_A S) = T(R)$
- When A has a unique value, the same in R and S, then $T(R \times|_A S) = T(R) \times T(S)$
Size Estimation

Assumptions:

• **Containment of values:** if \(V(R,A) \leq V(S,A) \), then the set of A values of R is included in the set of A values of S
 – Note: this indeed holds when A is a foreign key in R, and a key in S

• **Preservation of values:** for any other attribute B,
 \(V(R \ |\times|_A S, B) = V(R, B) \) (or \(V(S, B) \))
Size Estimation

Assume $V(R,A) \leq V(S,A)$

- Then each tuple t in R joins *some* tuple(s) in S
 - How many?
 - On average $T(S)/V(S,A)$
 - t will contribute $T(S)/V(S,A)$ tuples in $R \Join_A S$

- Hence $T(R \Join_A S) = T(R) \cdot T(S) / V(S,A)$

In general: $T(R \Join_A S) = T(R) \cdot T(S) / \max(V(R,A), V(S,A))$
Size Estimation

Example:

- $T(R) = 10000, \ T(S) = 20000$
- $V(R,A) = 100, \ V(S,A) = 200$
- How large is $R \times_A S$?

Answer: $T(R \times_A S) = 10000 \cdot \frac{20000}{200} = 1M$
Size Estimation

Joins on more than one attribute:

• \(T(R \mid \times_{A,B} S) = \)

\[\frac{T(R) \cdot T(S)}{\max(V(R,A), V(S,A)) \cdot \max(V(R,B), V(S,B))} \]
Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)
Histograms

Employee(ssn, name, salary, phone)

• Maintain a histogram on salary:

<table>
<thead>
<tr>
<th>Salary:</th>
<th>0..20k</th>
<th>20k..40k</th>
<th>40k..60k</th>
<th>60k..80k</th>
<th>80k..100k</th>
<th>> 100k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

• $T(Employee) = 25000$, but now we know the distribution
Histograms

Ranks(rankName, salary)
- Estimate the size of Employee |×| Salary Ranks

<table>
<thead>
<tr>
<th>Employee</th>
<th>0..20k</th>
<th>20k..40k</th>
<th>40k..60k</th>
<th>60k..80k</th>
<th>80k..100k</th>
<th>> 100k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ranks</th>
<th>0..20k</th>
<th>20k..40k</th>
<th>40k..60k</th>
<th>60k..80k</th>
<th>80k..100k</th>
<th>> 100k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>
Histograms

- **Eqwidth**

<table>
<thead>
<tr>
<th></th>
<th>0..20</th>
<th>20..40</th>
<th>40..60</th>
<th>60..80</th>
<th>80..100</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>2</td>
<td>104</td>
<td>9739</td>
<td>152</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Eqdepth**

<table>
<thead>
<tr>
<th></th>
<th>0..44</th>
<th>44..48</th>
<th>48..50</th>
<th>50..56</th>
<th>55..100</th>
</tr>
</thead>
</table>