Lecture 07:
E/R Diagrams

Monday, April 9, 2007
Outline

• E/R diagrams
 – Chapter 2

• From E/R diagrams to relations
 – Chapters 3.2, 3.3
Database Design

• Why do we need it?
 – Agree on structure of the database before deciding on a particular implementation.

• Consider issues such as:
 – What entities to model
 – How entities are related
 – What constraints exist in the domain
 – How to achieve good designs

• Several formalisms exists
 – We discuss E/R diagrams
Entity / Relationship Diagrams

Objects \rightarrow entities
Classes \rightarrow entity sets

Attributes are like in ODL.

Relationships: like in ODL except
- first class citizens (not associated with classes)
- not necessarily binary
Keys in E/R Diagrams

• Every entity set must have a key
What is a Relation?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of \(A \times B \)

- \(A = \{1,2,3\}, \quad B = \{a,b,c,d\}, \quad A \times B = \{(1,a),(1,b), \ldots, (3,d)\} \quad A = \)

- \(R = \{(1,a), (1,c), (3,b)\} \)

- *makes* is a subset of *Product \(\times \) Company*:

\[\begin{array}{c}
1 \\
2 \\
3 \\
a \\
b \\
c \\
d \\
\end{array} \]

\[\begin{array}{c}
\text{Product} \\
\text{makes} \\
\text{Company} \\
\end{array} \]
Multipliclity of E/R Relations

- one-one:

- many-one

- many-many
What does this say?
Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Product

Purchase

Person

Store

Can still model as a mathematical set (how?)
Arrows in Multiway Relationships

Q: what does the arrow mean?

A: a given person buys a given product from at most one store
Arrows in Multiway Relationships

Q: what does the arrow mean?

A: a given person buys a given product from at most one store
AND every store sells to every person at most one product
Arrows in Multiway Relationships

Q: How do we say that every person shops at at most one store?

A: cannot. This is the best approximation. (Why only approximation?)
Converting Multi-way Relationships to Binary

- **Purchase**
 - **StoreOf**
 - **Store**
 - **BuyerOf**
 - **Person**
 - **ProductOf**
 - **Product**

date
3. Design Principles

What’s wrong?

Product → Purchase → Person

Country → President → Person

Moral: be faithful!
Design Principles: What’s Wrong?

Moral: pick the right kind of entities.
Design Principles: What’s Wrong?

Moral: don’t complicate life more than it already is.
From E/R Diagrams to Relational Schema

• Entity set → relation
• Relationship → relation
Entity Set to Relation

Product(name, category, price)

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>$19.99</td>
</tr>
</tbody>
</table>
Relationships to Relations

Makes (product-name, product-category, company-name, year)

<table>
<thead>
<tr>
<th>Product-name</th>
<th>Product-Category</th>
<th>Company-name</th>
<th>Starting-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>gizmoWorks</td>
<td>1963</td>
</tr>
</tbody>
</table>

(watch out for attribute name conflicts)
No need for **Makes**. Modify **Product**:

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
<th>StartYear</th>
<th>companyName</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>19.99</td>
<td>1963</td>
<td>gizmoWorks</td>
</tr>
</tbody>
</table>
Multi-way Relationships to Relations

Product

name
price

Purchase

Purchase(prodName, stName, ssn)

Person

name
ssn

Store

name
address
Modeling Subclasses

Some objects in a class may be special
 • define a new class
 • better: define a subclass

![Diagram]

Products

- Software products
- Educational products

So --- we define subclasses in E/R
Subclasses

Product

isa

Software Product

platforms

isa

Educational Product

Age Group

name
category

price
Understanding Subclasses

• Think in terms of records:
 – Product
 | field1 | field2 |
 – SoftwareProduct
 | field1 | field2 | field3 |
 – EducationalProduct
 | field1 | field2 | field3 | field4 | field5 |
Subclasses to Relations

Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>

Software Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>unix</td>
</tr>
</tbody>
</table>

Educational Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>toddler</td>
</tr>
<tr>
<td>Toy</td>
<td>retired</td>
</tr>
</tbody>
</table>
Difference between OO and E/R inheritance

- OO: classes are disjoint (same for Java, C++)
Difference between OO and E/R inheritance

- E/R: entity sets overlap
No need for multiple inheritance in E/R

We have three entity sets, but four different kinds of objects.
Modeling UnionTypes With Subclasses

```
FurniturePiece

Person    Company
```

Say: each piece of furniture is owned either by a person, or by a company
Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company

Solution 1. Acceptable, imperfect (What’s wrong ?)
Modeling Union Types with Subclasses

Solution 2: better, more laborious
Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples’ ages are between 0 and 150.
Keys in E/R Diagrams

Underline:

No formal way to specify multiple keys in E/R diagrams
Single Value Constraints

makes

v. s.

makes
Referential Integrity Constraints

Each product made by at most one company. Some products made by no company.

Each product made by exactly one company.
Other Constraints

What does this mean?
Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Notice: we encountered this when converting multiway relationships to binary relationships (last lecture).
Handling Weak Entity Sets

Convert to a relational schema (in class)