Lecture 07: E/R Diagrams

Friday, January 20, 2006

Outline

• E/R diagrams (Chapter 2)
• From E/R diagrams to relations (3.2, 3.3)

• Next time: Functional dependencies, normal forms:
• Warning: this is hard, come to class
Database Design

• Why do we need it?
 – Agree on structure of the database before deciding on a particular implementation.

• Consider issues such as:
 – What entities to model
 – How entities are related
 – What constraints exist in the domain
 – How to achieve good designs

Database Design Formalisms

1. Object Definition Language (ODL):
 – Closer in spirit to object-oriented models
 – Will not cover in class

2. Entity/Relationship model (E/R):
 – More relational in nature.
 – Very widely used

• Both can be translated (semi-automatically) to relational schemas
• ODL to OO-schema: direct transformation (C++ or Smalltalk based system).
Entity / Relationship Diagrams

Objects → entities
Classes → entity sets

Attributes are like in ODL.

Relationships: like in ODL except
- first class citizens (not associated with classes)
- not necessarily binary
Keys in E/R Diagrams

- Every entity set must have a key

```
name
category
price
```

Product

What is a Relation?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of
 \(A \times B \)
- \(A=\{1,2,3\}, \quad B=\{a,b,c,d\}, \)
- \(A \times B = \{(1,a),(1,b), \ldots, (3,d)\} \)
- \(R = \{(1,a), (1,c), (3,b)\} \)

- makes is a subset of Product \(\times \) Company:
Multiplicity of E/R Relations

- one-one:
- many-one
- many-many

What does this say?
Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (how?)

Arrows in Multiway Relationships

Q: what does the arrow mean?

A: a given person buys a given product from at most one store
Arrows in Multiway Relationships

Q: what does the arrow mean?

A: a given person buys a given product from at most one store AND every store sells to every person at most one product.

Arrows in Multiway Relationships

Q: How do we say that every person shops at at most one store?

A: cannot. This is the best approximation. (Why only approximation?)
Converting Multi-way Relationships to Binary

From E/R Diagrams to Relational Schema

- Entity set → relation
- Relationship → relation
Entity Set to Relation

- **Product** (name, category, price)

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>$19.99</td>
</tr>
</tbody>
</table>

Relationships to Relations

- **Makes** (product-name, product-category, company-name, year)

<table>
<thead>
<tr>
<th>Product-name</th>
<th>Product-Category</th>
<th>Company-name</th>
<th>Starting-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>gizmoWorks</td>
<td>1963</td>
</tr>
</tbody>
</table>

(watch out for attribute name conflicts)
No need for **Makes.** Modify **Product:**

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
<th>StartYear</th>
<th>companyName</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>19.99</td>
<td>1963</td>
<td>gizmoWorks</td>
</tr>
</tbody>
</table>

Multi-way Relationships to Relations

```
Purchase(prodName_stName_ssn)
```
3. Design Principles

What’s wrong?

Product \rightarrow Purchase \rightarrow Person

Country \rightarrow President \rightarrow Person

Moral: be faithful!

Design Principles: What’s Wrong?

Product \rightarrow Purchase \rightarrow Store

date

personName

personAddr

Moral: pick the right kind of entities.
Design Principles: What’s Wrong?

Product

Purchase

Dates

Store

Person

date

Moral: don’t complicate life more than it already is.

Modeling Subclasses

Some objects in a class may be special
- define a new class
- better: define a subclass

Products

Software products

Educational products

So --- we define subclasses in E/R
Understanding Subclasses

- Think in terms of records:
 - Product
 - field1
 - field2
 - SoftwareProduct
 - field1
 - field2
 - field3
 - EducationalProduct
 - field1
 - field2
 - field3
Subclasses to Relations

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>

Software Product
- Name: Gizmo
- Platforms: unix

Educational Product
- Name: Gizmo
- Age Group: toddler
- Toy
- Age Group: retired

Difference between OO and E/R inheritance

- **OO:** classes are disjoint (same for Java, C++)

Diagram:
- **Product**
- **Software Product**
- **Educational Product**
Difference between OO and E/R inheritance

- E/R: entity sets overlap

No need for multiple inheritance in E/R

We have three entity sets, but four different kinds of objects.
Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company

Solution 1. Acceptable, imperfect (What’s wrong?)
Modeling Union Types with Subclasses

Solution 2: better, more laborious

```
isa

FurniturePiece

ownedBy

Person

isa

Company

Owner
```

Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples’ ages are between 0 and 150.
Keys in E/R Diagrams

Underline:

No formal way to specify multiple keys in E/R diagrams

Single Value Constraints
Referential Integrity Constraints

Each product made by at most one company.
Some products made by no company

Each product made by **exactly** one company.

Other Constraints

What does this mean?
Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Handling Weak Entity Sets

Convert to a relational schema (in class)