Lecture 21:
Query Execution

Monday, November 20, 2006
Outline

• Hash-tables (13.4)
• Query execution: 15.1 – 15.5
Architecture of a Database Engine

SQL query

Parsing

Select Logical Plan

Select Physical Plan

Query Execution

Logical plan

Physical plan

Query optimization
Logical Algebra Operators

• Union, intersection, difference
• Selection σ
• Projection Π
• Join $|x|$
• Duplicate elimination δ
• Grouping γ
• Sorting τ
Logical Query Plan

```
SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100
```

\[T1(city, p, c) \]
\[T2(city, p, c) \]
\[T3(city, c) \]

\[\gamma_{\text{city}, \text{sum(price)} \rightarrow p, \text{count(*)} \rightarrow c} \]

\[\Pi_{\text{city, c}} \]
\[\sigma_{p > 100} \]

sales(product, city, price)

\[T1, T2, T3 = \text{temporary tables} \]
Logical Query Plan

```
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
    P.city='seattle' AND
    Q.phone > '5430000'
```

![Diagram of query plan]

```
Purchase(buyer, city)
Person(name, phone)
```

\[\pi_{\text{buyer}}(\sigma_{\text{City}='\text{seattle'} \land \text{phone}>'5430000'}(\text{购买} = \text{name})) \]

```
Purchase Person
Buyer=name
City='seattle' phone='5430000'
```
Physical Query Plan

```
SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
   Q.city='seattle' AND
   Q.phone > '5430000'
```

Query Plan:
- logical tree
- implementation choice at every node
- scheduling of operations.

Some operators are from relational algebra, and others (e.g., scan) are not.
Question in Class

Logical operator:

Product(pname, cname) \times\ Company(cname, city)

Propose three physical operators for the join, assuming the tables are in main memory:

1.
2.
3.
Question in Class

Product(pname, cname) \(\times \) Company(cname, city)

• 1000000 products
• 1000 companies

How much time do the following physical operators take if the data is in main memory?

• Nested loop join \(\text{time} = \)
• Sort and merge = merge-join \(\text{time} = \)
• Hash join \(\text{time} = \)
Cost Parameters

The *cost* of an operation = total number of I/Os
result assumed to be delivered in main memory

Cost parameters:

- $B(R) =$ number of blocks for relation R
- $T(R) =$ number of tuples in relation R
- $V(R, a) =$ number of distinct values of attribute a
- $M =$ size of main memory buffer pool, in blocks
Cost Parameters

• *Clustered* table R:
 – Blocks consists only of records from this table
 – \(B(R) \ll T(R) \)

• *Unclustered* table R:
 – Its records are placed on blocks with other tables
 – \(B(R) \approx T(R) \)

• When a is a key, \(V(R,a) = T(R) \)
• When a is not a key, \(V(R,a) \)
Selection and Projection

Selection $\sigma(R)$, projection $\Pi(R)$

- Both are *tuple-at-a-time* algorithms
- Cost: $B(R)$
Hash Tables

• Key data structure used in many operators
• May also be used for indexes, as alternative to B+trees
• Recall basics:
 – There are n buckets
 – A hash function $f(k)$ maps a key k to $\{0, 1, \ldots, n-1\}$
 – Store in bucket $f(k)$ a pointer to record with key k
• Secondary storage: bucket = block, use overflow blocks when needed
Hash Table Example

- Assume 1 bucket (block) stores 2 keys + pointers
- $h(e)=0$
- $h(b)=h(f)=1$
- $h(g)=2$
- $h(a)=h(c)=3$

Here: $h(x) = x \mod 4$
Searching in a Hash Table

- Search for a:
- Compute $h(a) = 3$
- Read bucket 3
- 1 disk access
Insertion in Hash Table

- Place in right bucket, if space
- E.g. $h(d)=2$

<table>
<thead>
<tr>
<th>0</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>d</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>c</td>
</tr>
</tbody>
</table>
Insertion in Hash Table

- Create overflow block, if no space
- E.g. $h(k) = 1$

![Hash Table Diagram]

- More overflow blocks may be needed
Hash Table Performance

• Excellent, if no overflow blocks
• Degrades considerably when number of keys exceeds the number of buckets (I.e. many overflow blocks).
Main Memory Hash Join

Hash join: R |x| S

• Scan S, build buckets in main memory
• Then scan R and join

• Cost: B(R) + B(S)
• Assumption: B(S) <= M
Duplicate Elimination

Duplicate elimination $\delta(R)$

- Hash table in main memory

- Cost: $B(R)$

- Assumption: $B(\delta(R)) \leq M$
Grouping

Grouping:

Product(name, department, quantity)

γ_{department, sum(quantity)} \ (Product) \ → \\
Answer(department, sum)

Main memory hash table

Question: How ?
Nested Loop Joins

• Tuple-based nested loop $R \bowtie S$

 for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

 for each tuple r in R
 for each tuple s in S do
 if r and s join then output (r,s)

• Cost: $T(R) \times B(S)$ when S is clustered
• Cost: $T(R) \times T(S)$ when S is unclustered
Nested Loop Joins

• We can be much more clever

• *Question*: how would you compute the join in the following cases? What is the cost?

 – $B(R) = 1000$, $B(S) = 2$, $M = 4$
 – $B(R) = 1000$, $B(S) = 3$, $M = 4$
 – $B(R) = 1000$, $B(S) = 6$, $M = 4$
Nested Loop Joins

- Block-based Nested Loop Join

\[
\text{for each } (M-2) \text{ blocks } bs \text{ of } S \text{ do }
\]
\[
\quad \text{for each block } br \text{ of } R \text{ do }
\]
\[
\quad \quad \text{for each tuple } s \text{ in } bs
\]
\[
\quad \quad \quad \text{for each tuple } r \text{ in } br \text{ do }
\]
\[
\quad \quad \quad \quad \text{if } "r \text{ and } s \text{ join}" \text{ then output}(r,s)
\]
Nested Loop Joins

Hash table for block of S (M-2 pages)

Input buffer for R Output buffer

Join Result
Nested Loop Joins

• Block-based Nested Loop Join

• Cost:
 – Read S once: cost $B(S)$
 – Outer loop runs $B(S)/(M-2)$ times, and each time need to read R: costs $B(S)B(R)/(M-2)$
 – Total cost: $B(S) + B(S)B(R)/(M-2)$

• Notice: it is better to iterate over the smaller relation first

• $R \mid x \mid S$: R=outer relation, S=inner relation
Index Based Join

• \(R \bowtie S \)
• Assume \(S \) has an index on the join attribute

\[
\text{for each tuple } r \text{ in } R \text{ do}
\]
\[
\text{lookup the tuple(s) } s \text{ in } S \text{ using the index}
\]
\[
\text{output } (r,s)
\]
Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: \(B(R) + T(R)B(S)/V(S,a) \)
- If index is unclustered: \(B(R) + T(R)T(S)/V(S,a) \)
Zig-zag Index Based Join

• Assume both R and S have a sorted index (B+ tree) on the join attribute
• Then perform a merge join
 – called zig-zag join
• Cost: $B(R) + B(S)$
Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a: cost $B(R)/V(R,a)$

- Unclustered index on a: cost $T(R)/V(R,a)$
 - We have seen that this is like a join
Index Based Selection

- Example:
 - Table scan (assuming R is clustered):
 - $B(R) = 2000$
 - $T(R) = 100,000$
 - $V(R, a) = 20$

 - Index based selection:
 - If index is clustered: $B(R)/V(R,a) = 100$ I/Os
 - If index is unclustered: $T(R)/V(R,a) = 5,000$ I/Os

- Lesson: don’t build unclustered indexes when $V(R,a)$ is small!

\[
\text{cost of } \sigma_{a=v}(R) = ?
\]
Operations on Very Large Tables

- Partitioned hash algorithms
- Merge-sort algorithms
Partitioned Hash Algorithms

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. \(\frac{B(R)}{M} \)

\[\text{Partitioned Hash Algorithm} \]

- Does each bucket fit in main memory?
 - Yes if \(\frac{B(R)}{M} \leq M \), i.e. \(B(R) \leq M^2 \)
Duplicate Elimination

• Recall: $\delta(R) = \text{duplicate elimination}$
• Step 1. Partition R into buckets
• Step 2. Apply δ to each bucket (may read in main memory)

• Cost: $3B(R)$
• Assumption: $B(R) \leq M^2$
Grouping

- Recall: $\gamma(R) = \text{grouping and aggregation}$
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)

- Cost: $3B(R)$
- Assumption: $B(R) \leq M^2$
Partitioned Hash Join

R \(\times \) S

- **Step 1:**
 - Hash S into M buckets
 - send all buckets to disk

- **Step 2**
 - Hash R into M buckets
 - Send all buckets to disk

- **Step 3**
 - Join every pair of buckets
Hash-Join

- Partition both relations using hash fn \(h \): R tuples in partition i will only match S tuples in partition i.

- Read in a partition of R, hash it using \(h2 (<> h!) \). Scan matching partition of S, search for matches.
Partitioned Hash Join

- Cost: $3B(R) + 3B(S)$
- Assumption: $\min(B(R), B(S)) \leq M^2$
External Sorting

• Problem:
• Sort a file of size B with memory M
• Where we need this:
 – ORDER BY in SQL queries
 – Several physical operators
 – Bulk loading of B+-tree indexes.
• Will discuss only 2-pass sorting, for when $B < M^2$
External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort
External Merge-Sort: Step 2

- Merge $M - 1$ runs into a new run
- Result: runs of length $M (M - 1) \approx M^2$

If $B \leq M^2$ then we are done
Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) \leq M^2
Duplicate Elimination

Duplicate elimination \(\delta(R) \)

- Idea: do a two step merge sort, but change one of the steps

- Question in class: which step needs to be changed and how?

- Cost = 3B(R)

- Assumption: \(B(\delta(R)) \leq M^2 \)
Grouping

Grouping: $\gamma_{a, \sum(b)} (R)$

• Same as before: sort, then compute the sum(b) for each group of a’s
• Total cost: $3B(R)$
• Assumption: $B(R) \leq M^2$
Merge-Join

Join R \(\times \) S

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join
Merge-Join

\[M_1 = \frac{B(R)}{M} \text{ runs for } R \]
\[M_2 = \frac{B(S)}{M} \text{ runs for } S \]
If \(B \leq M^2 \) then we are done
Two-Pass Algorithms Based on Sorting

Join $R \times S$

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: $3B(R) + 3B(S)$
- Assumption: $B(R) + B(S) \leq M^2$
Summary of External Join Algorithms

- Block Nested Loop: $B(S) + B(R) \times B(S)/M$

- Index Join: $B(R) + T(R)B(S)/V(S,a)$

- Partitioned Hash: $3B(R)+3B(S)$;
 \[- \min(B(R),B(S)) \leq M^2 \]

- Merge Join: $3B(R)+3B(S)$
 \[- B(R)+B(S) \leq M^2 \]