Lectures 8 and 9: Database Design

Friday, October 12
and Monday, October 15, 2006
Announcements/Reminders

• Homework 1: solutions are posted
• Homework 2: posted (due Wed. Oct. 24)
• Project Phase 1 due Wednesday
Outline

• The relational data model: 3.1
• Functional dependencies: 3.4
The Relational Data Model

- Main idea: store data in relations (= tables)

- What kind of tables?
 - Flat tables = First Normal Form
 - No anomalies = Boyce Codd Normal Form
First Normal Form (1NF)

- A database schema is in First Normal Form if all tables are flat.
Relational Schema Design

Conceptual Model:

Relational Model: plus FD’s

Normalization: Eliminates *anomalies*
Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don’t want
Relational Schema Design

Recall set attributes (persons with several phones):

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

One person may have multiple phones, but lives in only one city

Anomalies:
• Redundancy = repeat data
• Update anomalies = Fred moves to “Bellevue”
• Deletion anomalies = Joe deletes his phone number: what is his city?
Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Bellevue” (how ?)
- Easy to delete all Joe’s phone number (how ?)
Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its functional dependencies
- Use them to design a better relational schema
Functional Dependencies

• A form of constraint
 – hence, part of the schema
• Finding them is part of the database design
• Also used in normalizing the relations
Functional Dependencies

Definition:

If two tuples agree on the attributes

\[A_1, A_2, \ldots, A_n \]

then they must also agree on the attributes

\[B_1, B_2, \ldots, B_m \]

Formally:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]
When Does an FD Hold

Definition: \(A_1, ..., A_m \rightarrow B_1, ..., B_n \) holds in \(R \) if:

\[
\forall t, t' \in R, (t.A_1 = t'.A_1 \land ... \land t.A_m = t'.A_m \Rightarrow t.B_1 = t'.B_1 \land ... \land t.B_n = t'.B_n)
\]

<table>
<thead>
<tr>
<th>R</th>
<th>A_1</th>
<th>...</th>
<th>A_m</th>
<th>B_1</th>
<th>...</th>
<th>B_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If \(t, t' \) agree here
- Then \(t, t' \) agree here
Examples

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

EmpID \rightarrow Name, Phone, Position

Position \rightarrow Phone

but not Phone \rightarrow Position
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>← Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>← Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Position ➔ Phone
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

but not Phone → Position
Example

FD’s are constraints:
• On some instances they hold
• On others they don’t

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>

Does this instance satisfy all the FDs?
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Black</td>
<td>Toys</td>
<td>99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Stationary</td>
<td>Green</td>
<td>Office-supp.</td>
<td>59</td>
</tr>
</tbody>
</table>

What about this one?
An Interesting Observation

If all these FDs are true:

- name \rightarrow color
- category \rightarrow department
- color, category \rightarrow price

Then this FD also holds:
- name, category \rightarrow price

Why ??
Goal: Find ALL Functional Dependencies

• Anomalies occur when certain “bad” FDs hold

• We know some of the FDs

• Need to find all FDs, then look for the bad ones
Armstrong’s Rules (1/3)

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

Is equivalent to

\[A_1, A_2, \ldots, A_n \rightarrow B_1 \]
\[A_1, A_2, \ldots, A_n \rightarrow B_2 \]
\[\quad \ldots \ldots \]
\[A_1, A_2, \ldots, A_n \rightarrow B_m \]
Armstrong’s Rules (1/3)

\[A_1, A_2, \ldots, A_n \rightarrow A_i \]

where \(i = 1, 2, \ldots, n \)

Trivial Rule

Why?
Armstrong’s Rules (1/3)

Transitive Closure Rule

If

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

and

\[B_1, B_2, \ldots, B_m \rightarrow C_1, C_2, \ldots, C_p \]

then

\[A_1, A_2, \ldots, A_n \rightarrow C_1, C_2, \ldots, C_p \]

Why?
<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>…</th>
<th>Aₘ</th>
<th>B₁</th>
<th>…</th>
<th>Bₘ</th>
<th>C₁</th>
<th>…</th>
<th>Cₚ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Example (continued)

Start from the following FDs:

- 1. name \rightarrow color
- 2. category \rightarrow department
- 3. color, category \rightarrow price

Infer the following FDs:

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Which Rule did we apply ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. name, category \rightarrow name</td>
<td></td>
</tr>
<tr>
<td>5. name, category \rightarrow color</td>
<td></td>
</tr>
<tr>
<td>6. name, category \rightarrow category</td>
<td></td>
</tr>
<tr>
<td>7. name, category \rightarrow color, category</td>
<td></td>
</tr>
<tr>
<td>8. name, category \rightarrow price</td>
<td></td>
</tr>
</tbody>
</table>
Example (continued)

Answers:

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Which Rule did we apply?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. name, category → name</td>
<td>Trivial rule</td>
</tr>
<tr>
<td>5. name, category → color</td>
<td>Transitivity on 4, 1</td>
</tr>
<tr>
<td>6. name, category → category</td>
<td>Trivial rule</td>
</tr>
<tr>
<td>7. name, category → color, category</td>
<td>Split/combine on 5, 6</td>
</tr>
<tr>
<td>8. name, category → price</td>
<td>Transitivity on 3, 7</td>
</tr>
</tbody>
</table>

THIS IS TOO HARD! Let’s see an easier way.
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The closure, $\{A_1, \ldots, A_n\}^+ = \text{the set of attributes } B$

s.t. $A_1, \ldots, A_n \rightarrow B$

Example:

name \rightarrow color
category \rightarrow department
color, category \rightarrow price

Closures:

$name^+ = \{\text{name, color}\}$
$\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$
color$^+ = \{\text{color}\}$
Closure Algorithm

\[X = \{A_1, \ldots, A_n\}. \]

Repeat until \(X \) doesn’t change do:

if \(B_1, \ldots, B_n \rightarrow C \) is a FD and \(B_1, \ldots, B_n \) are all in \(X \)
then add \(C \) to \(X \).

Example:

\[
\begin{align*}
\{\text{name, category}\}^+ &= \\
&= \{\text{name, category, color, department, price}\}
\end{align*}
\]

Hence: \(\text{name, category} \rightarrow \text{color, department, price} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{array}{c}
A, B \rightarrow C \\
A, D \rightarrow E \\
B \rightarrow D \\
A, F \rightarrow B \\
\end{array}
\]

Compute \{A, B\}^+ \quad X = \{A, B, \}

Compute \{A, F\}^+ \quad X = \{A, F, \}
Why Do We Need Closure

• With closure we can find all FD’s easily

• To check if $X \rightarrow A$
 – Compute X^+
 – Check if $A \in X^+$
Using Closure to Infer ALL FDs

Example:

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow B \\
B & \rightarrow D
\end{align*}
\]

Step 1: Compute \(X^+\), for every \(X\):

\[
\begin{align*}
A^+ &= A, \quad B^+ = BD, \quad C^+ = C, \quad D^+ = D \\
AB^+ &= ABCD, \quad AC^+ = AC, \quad AD^+ = ABCD, \\
&\quad \quad BC^+ = BCD, \quad BD^+ = BD, \quad CD^+ = CD \\
ABC^+ &= ABD^+ = ACD^+ = ABCD \text{ (no need to compute– why ?)} \\
BCD^+ &= BCD, \quad ABCD^+ = ABCD
\end{align*}
\]

Step 2: Enumerate all FD’s \(X \rightarrow Y\), s.t. \(Y \subseteq X^+\) and \(X \cap Y = \emptyset\):

\[
AB \rightarrow CD, \quad AD \rightarrow BC, \quad ABC \rightarrow D, \quad ABD \rightarrow C, \quad ACD \rightarrow B
\]
Another Example

- Enrollment(student, major, course, room, time)

 student \rightarrow major
 major, course \rightarrow room
 course \rightarrow time

What else can we infer? [in class, or at home]
Keys

• A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$

• A **key** is a minimal superkey
 – I.e. set of attributes which is a superkey and for which no subset is a superkey
Computing (Super)Keys

• Compute X^+ for all sets X
• If $X^+ = \text{all attributes}$, then X is a key
• List only the minimal X’s
Example

Product(name, price, category, color)

name, category \rightarrow price
category \rightarrow color

What is the key?
Example

Product(name, price, category, color)

\[
\begin{array}{|c|c|}
\hline
\text{name, category} & \to \text{price} \\
\text{category} & \to \text{color} \\
\hline
\end{array}
\]

What is the key?

(name, category) + = name, category, price, color

Hence (name, category) is a key
Examples of Keys

Enrollment\((\text{student, address, course, room, time})\)

\[
\begin{align*}
\text{student} & \rightarrow \text{address} \\
\text{room, time} & \rightarrow \text{course} \\
\text{student, course} & \rightarrow \text{room, time}
\end{align*}
\]

(find keys at home)
Eliminating Anomalies

Main idea:

• $X \rightarrow A$ is OK if X is a (super)key

• $X \rightarrow A$ is not OK otherwise
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

SSN → Name, City

What the key?
\{SSN, PhoneNumber\}
Hence SSN → Name, City is a “bad” dependency
Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD’s s.t. there are two or more keys
Key or Keys?

Can we have more than one key?

Given \(R(A,B,C) \) define FD’s s.t. there are two or more keys

\[
\begin{align*}
AB & \rightarrow C \\
BC & \rightarrow A
\end{align*}
\]

or

\[
\begin{align*}
A & \rightarrow BC \\
B & \rightarrow AC
\end{align*}
\]

what are the keys here?

Can you design FDs such that there are \(three \) keys?
Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_1, ..., A_n \rightarrow B$ is a non-trivial dependency in R, then $\{A_1, ..., A_n\}$ is a superkey for R

In other words: there are no “bad” FDs

Equivalently:

$\forall X$, either $(X^+ = X)$ or $(X^+ = \text{all attributes})$
BCNF Decomposition Algorithm

repeat
 choose $A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n$ that violates BCNF
 split R into $R_1(A_1, \ldots, A_m, B_1, \ldots, B_n)$ and $R_2(A_1, \ldots, A_m, [\text{others}])$
 continue with both R_1 and R_2
until no more violations

Is there a 2-attribute relation that is not in BCNF?

In practice, we have a better algorithm (coming up)
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

SSN \rightarrow Name, City

What the key?

\{SSN, PhoneNumber\} use SSN \rightarrow Name, City to split
Example

Let’s check anomalies:
- Redundancy ?
- Update ?
- Delete ?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>PhoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-45-6789</td>
<td>206-555-1234</td>
</tr>
<tr>
<td>123-45-6789</td>
<td>206-555-6543</td>
</tr>
<tr>
<td>987-65-4321</td>
<td>908-555-2121</td>
</tr>
<tr>
<td>987-65-4321</td>
<td>908-555-1234</td>
</tr>
</tbody>
</table>
Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
 SSN → name, age
 age → hairColor

Decompose in BCNF (in class):
BCNF Decomposition Algorithm

```
BCNF_Decompose(R)

    find X s.t.: X \neq X^+ \neq [all attributes]

    if (not found) then “R is in BCNF”

    let Y = X^+ - X
    let Z = [all attributes] - X^+

decompose R into R1(X \cup Y) and R2(X \cup Z)
continue to decompose recursively R1 and R2
```
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Iteration 1: Person
SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P
age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

Find X s.t.: X ≠ X+ ≠ [all attributes]

What are the keys?
Example

R(A,B,C,D)
A⁺ = ABC ≠ ABCD

R₁(A,B,C)
B⁺ = BC ≠ ABC

R₁₁(B,C)
R₁₂(A,B)

R₂(A,D)

What happens if in R we first pick B⁺? Or AB⁺?
Decompositions in General

\[R(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_p) \]

\[R_1(A_1, ..., A_n, B_1, ..., B_m) \]

\[R_2(A_1, ..., A_n, C_1, ..., C_p) \]

\[R_1 = \text{projection of } R \text{ on } A_1, ..., A_n, B_1, ..., B_m \]

\[R_2 = \text{projection of } R \text{ on } A_1, ..., A_n, C_1, ..., C_p \]
Theory of Decomposition

• Sometimes it is correct:

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

Lossless decomposition
Incorrect Decomposition

• Sometimes it is not:

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

Lossy decomposition
Decompositions in General

If $A_1, ..., A_n \rightarrow B_1, ..., B_m$
Then the decomposition is lossless

Note: don’t need $A_1, ..., A_n \rightarrow C_1, ..., C_p$

BCNF decomposition is always lossless. WHY?