About Me

Dan Suciu:
• Joined the department in 2000
• Before that: Bell Labs, AT&T Labs

Research:
• Past: XML and semi-structured data:
 – Query language: XML-QL (later XQuery)
 – Compressor: XMill
 – Theory: XPath containment, XML typechecking
• Present: Probabilistic databases: MystiQ
Staff

• Instructor: Dan Suciu
 – Allen, Room 662, suciu@cs.washington.edu
 Office hours: Wednesdays 11:30 (appointment strongly recommended)

• TAs:
 – Jue Wang, juewang@cs.washington.edu
 Office hours: Fridays 1:00-2:00, Room TBA
Communications

• Web page:
 http://www.cs.washington.edu/444/
 – Lectures will be available here
 – Homeworks will be posted here (HW1 is posted)
 – The project description will be here

• Mailing list:
 – Announcements, group discussions
 – Please subscribe
Textbook(s)

Main textbook, available at the bookstore:

Most chapters are good. Some are not (functional dependencies). COME TO CLASS! ASK QUESTIONS! READ SLIDES!
Other Texts

Available at the Engineering Library (not on reserve):

• *Database Management Systems*, Ramakrishnan
• *XQuery from the Experts*, Katz, Ed.
• *Fundamentals of Database Systems*, Elmasri, Navathe
• *Foundations of Databases*, Abiteboul, Hull, Vianu
• *Data on the Web*, Abiteboul, Buneman, Suciu
Outline of Today’s Lecture

1. Overview of DBMS

2. DBMS through an example

3. Course outline

4. Assignment 1, Homework 1
Database

What is a database?

Give examples of databases
Database

What is a database?

• A collection of files storing related data

Give examples of databases

• Accounts database; payroll database; UW’s students database; Amazon’s products database; airline reservation database
Database Management System

What is a DBMS?

Give examples of DBMS
Database Management System

What is a DBMS?

- A big C program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Give examples of DBMS

- DB2 (IBM), SQL Server (MS), Oracle, Sybase
- MySQL, Postgres, …
Market Shares

From 2004 www.computerworld.com

- IMB: 35% market with $2.5BN in sales
- Oracle: 33% market with $2.3BN in sales
- Microsoft: 19% market with $1.3BN in sales
An Example

The Internet Movie Database
http://www.imdb.com

• Entities:
 Actors (800k), Movies (400k), Directors, …

• Relationships:
 who played where, who directed what, …

Want to store and process locally; what functions do we need?
What the Database Systems Does

1. Create/store large datasets
2. Search/query/update
3. Change the structure
4. Concurrent access to many user
5. Recover from crashes
6. Security (not here, but in other apps)
Possible Organizations

• Files

• Spreadsheets

• DBMS
1. Create/store Large Datasets

- Files
 - Yes, but…

- Spreadsheets
 - Not really…

- DBMS
 - Yes
2. Search/Query/Update

• Simple query:
 – In what year was ‘Rain man’ produced?

• Multi-table query:
 – Find all movies by ‘Coppola’

• Complex query:
 – For each actor, count her/his movies

• Updating
 – Insert a new movie; add an actor to a movie; etc
2. Search/Query/Update

- Files
 - Simple queries

- Spreadsheets
 - Multi-table queries (maybe)

- DBMS
 - All

Updates: generally OK
3. Change the Structure

Add *Address* to each Actor

- Files
 - Very hard
- Spreadsheets
 - Yes
- DBMS
 - Yes
4. Concurrent Access

Multiple users access/update the data concurrently

- What can go wrong?
- How do we protect against that in OS?
- This is insufficient in databases; why?
4. Concurrent Access

Multiple users access/update the data concurrently

• What can go wrong ?
 – Lost update; resulting in inconsistent data
• How do we protect against that in OS ?
 – Locks
• This is insufficient in databases; why ?
 – A logical action consists of *multiple* updates
5. Recover from crashes

• Transfer $100 from account #4662 to #7199:

```
X = Read(Account, #4662);
X.amount = X.amount - 100;
Write(Account, #4662, X);

Y = Read(Account, #7199);
Y.amount = Y.amount + 100;
Write(Account, #7199, Y);
```

CRASH!

What is the problem?
Enters a DMBS

“Two tier system” or “client-server”

connection
(ODBC, JDBC)

Data files

Database server (someone else’s C program)

Applications
DBMS = Collection of Tables

<table>
<thead>
<tr>
<th>Directors:</th>
<th>Movie_Directors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>fName</td>
</tr>
<tr>
<td>15901</td>
<td>Francis Ford</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| Movies: |
|---|---|---|
| mid | Title | Year |
| 130128 | The Godfather | 1972 |
| ... | ... | ... |

Still implemented as files, but behind the scenes can be quite complex

“data independence”
1. Create/store Large Datasets

Use SQL to create and populate tables:

```
CREATE TABLE Actors (Name CHAR(30), DateOfBirth CHAR(20))
INSERT INTO Actors VALUES('Tom Hanks', ...)
```

Size and physical organization is handled by DBMS
We focus on modeling the database

Will study data modeling in this course
2. Searching/Querying/Updating

- Find all movies by ‘Coppola’

```
SELECT title
FROM Movies, Directors, Movie_Directors
WHERE Directors.lname = 'Coppola' and
Movies.mid = Movie_Directors.mid and
Movie_Directors.id = Directors.id
```

We will study SQL in gory details in this course.

- What happens behind the scene ?

We will discuss the query optimizer in class.
3. Changing the Structure

Add *Address* to each Actor

```
ALTER TABLE Actor
ADD address CHAR(50)
DEFAULT ‘unknown’
```

Lots of cleverness goes on behind the scenes
3&4 Concurrency & Recovery: Transactions

- A transaction = sequence of statements that either all succeed, or all fail
- E.g. Transfer $100

BEGIN TRANSACTION:

UPDATE Accounts
SET amount = amount - 100
WHERE number = 4662

UPDATE Accounts
SET amount = amount + 100
WHERE number = 7199

COMMIT
Transactions

- Transactions have the ACID properties:
 A = atomicity
 C = consistency
 I = isolation
 D = durability
4. Concurrent Access

• Serializable execution of transactions
 – The I (=isolation) in ACID

We study three techniques in this course

Locks

Timestamps

Validation
5. Recovery from crashes

• Every transaction either executes completely, or doesn’t execute at all
 – The A (=atomicity) in ACID

We study three types of log files in this course

undo log file
redo log file
undo/redo log file
Course Outline

Part I
• SQL, Relational model, database design
• XML, XPath, Xquery
• Midterm: Friday, October 27 (in class)

Part II
• Database security, Transactions
• Concurrency control and recovery
• Query execution and optimization

Final: Monday, December 11, 8:30-10:20(this room)
Grading

• Homework: 30%
• Project: 25%
• Midterm: 15%
• Final: 25%
• Intangibles: 5%
The Project

- Models data management needs of a company
- Will have four phases
- We use SQL Server, C#, .NET
- First phase: handed out next week
Assignment 1, Homework 1

• Reading assignment for Friday:
 – Introduction from SQL for Web Nerds,

• Login SQL Server
 – User name = your U email address
 – Password = "studentID" + "!A"

• Homework 1: due Wednesday, October 11
 http://www.cs.washington.edu/education/courses/cse444/CurrentQtr/hw/index.htm
Accessing SQL Server

SQL Server Management Studio
- Server Type = Database Engine
- Server Name = IISQLSRV
- Authentication = SQL Server Authentication
 - Login = your email address
 - Password = 11111111

Change your password !!

Then play with IMDB