Computer Science & Engineering 444 – Final Exam

June 10, 2002

Closed book & notes – 120 minutes

100 points total

Name: ____________________________ StuID: _____________________
	Part
	Score

	1
	

	2
	

	3
	

	4
	

	Total
	

1. [30 points] Consider the following relational data:

	Id
	Time
	Title
	Composer
	Conductor

	3
	1:01
	Mad Rush
	J. Sibelius
	L. Bernstein

	4
	1:47
	Andante
	L. Beethoven
	NULL

	5
	1:57
	Upon Enchanted Ground
	A. Hovhaness
	NULL

	Id
	Parent
	Soloist

	13
	3
	A. Karis

	55
	5
	Y. Kondonassis

	56
	5
	F. Hendrickx

	57
	5
	H. Coryn

Name: ___

a. [10 points] Write the XML document wnyc.xml obtained by exporting the relational data into the DTD specified below.

<!ELEMENT wnyc (piece*)>

<!ELEMENT piece (time, title, composer, conductor?, soloist*>

<!ELEMENT time (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT composer (#PCDATA)>

<!ELEMENT conductor (#PCDATA)>

<!ELEMENT soloist (#PCDATA)>

<!ATTLIST piece id ID REQUIRED>

 Name: ___

b. [5 points] Write an XQuery to retrieve all conductors that conduct "Mad Rush" by "J. Sibelius". The result should not contain duplicates.
c. [5 points] Write an XQuery to retrieve all soloists that conduct some pieces that are broadcast at the same time as “Andante” (including “Andante”). The result should not contain duplicates.
Name: ___

d. [10 points] What’s the result of the following XQuery when it is applied to the XML document in (a)

<wnyc-by-solo> {

FOR $s IN distinct-values (/wnyc/piece/soloist)

RETURN
<solo>

<name>{$s/text()}</name>
{

FOR $c IN distinct-values (//piece[soloist = $s/text()]/conductor)

RETURN <conductor>

<name>{$c/text()}</name>
{

FOR $p IN (//piece[conductor = $c/text() AND soloist = $s/text()])

RETURN <piece> {

 $p/title,$p/composer
}</piece>

}

</conductor>
}

</solo>

 } </wnyc-by-solo>
Name: ___

2. [20 points] Consider the following relational data:

 Purchase (pname, date, buyer, seller)

 Product (name, price, manufacturer, category)

· Relation Purchase contains 10000 tuples and has 50 tuples per page.

· Relation Product contains 2000 tuples and has 10 tuples per page.

· Attribute name is the primary key for Produce
· Both relations are stored as simple heap files.

· Neither relation has any indexes built on it.

· 102 buffer pages are available

Consider the following query:

 Select name, seller, buyer
 From Product, Purchase
 Where Product.name = Purchase.pname

Please answer the following questions:
a. [5 points] What is the cost of joining Purchase and Product using a Page-oriented Nested Loops Join?
b. [5 points] What is the cost of joining Purchase and Product using a Hash Join?

Name: ___

c. [5 points] Suppose we had 205 pages of main memory buffer pages available. How would you do the join of Purchase and Product? What would be the cost of the join?
d. [5 points] Now suppose we have a hash-index on pname of Purchase. The index is non-clustered. The records are NOT stored together with the key values in the index. We need 1.2 I/O to get data entry in index page on average. What’s the cost of joining Purchase and Product using Index Nested Loop Join?

Name: ___

3. [26 points] Consider the following relational schema, that includes two relations:

 Author(pid, name)

 Paper(pid, title, year, citations)

 The Paper relation stores a set of published papers, including their publication ID, title, year of publication, and the number of citations by other papers. The Author relation stores for every paper ID, the set of author names (so there is a row in the Author table for every author).

a. [7 points] Write an SQL query over the above schema that returns for every author, the maximal number of citations on any of his/her publications, but only considering papers that have at most 3 authors. The query returns a set of pairs of the form (author, n), where n is the maximal number of citations on a paper of author.

Name: ___

b. [6 points] Consider the following query, that returns for every year, the maximal number of citations for papers published that year, but only if the number of citations is more than 20:

 Select year, Max(citations)

 From Paper

 Group By year

 Having Max(citations) > 20.

 Can you propose a transformation on the above query that is likely to reduce the cost of evaluating the query?
c. [5 points] Suppose the query was modified to also return the number of papers published in those years, i.e.,

 Select year, Max(citations), Count(*)

 From Paper

 Group By year

 Having Max(citations) > 20.

 Would the optimization you proposed above still be valid? Why or why not?

Name: ___

d. [8 points] Suppose we had a third relation in the schema, Cites(pid1, pid2), storing the actual citation references. That is, if the tuple (paper1, paper2) is in the relation Cites, then paper1 cites paper2. Write a trigger that enforces that whenever a tuple (paper1, paper2) is inserted into the Cites relation, then the year of publication of paper2 is not greater than the year of publication of paper1. When the condition is not satisfied, the tuple should not be added to the relation.

Name: ___

4. [24 points] Answer the following short questions in 4 lines or less.

a. What are the key differences between the Entity/Relationship and the ODL modeling formalisms?
b. Is it always a good idea to push selections before joins in query execution plans? Why or why not?
c. Give an example of where knowledge of a key constraint is useful for speeding up query processing.

Name: ___

d. When is a sort-merge join preferable over a hash-join?
e. When is a relation in Boyce-Codd Normal form?
f. What is the difference between a sparse and dense index?

