1. a)

Employees (EmployID, Lot)

Hourly_Emps (EmployID, Hours_worked, Hours_wages)

Contract_Emps (EmployID, ContractID) or ContractID as the key

Company (DeptID, Name, Budget, CEOEmployID, Since)

Or Company (DeptID, Name, Budget, CEOContractID, Since)

Work-in (EmployID, DeptID)

Note: please pay attention to two things:

1. Please distinguish between many-to-one and many-to-many relationship.

2. In Hourly_Emps and Contract_Emps relations, Lot attribute of Employees shouldn’t be included as it is not the key.

 b)
The key of Hourly_Emps is EmployID, because it is a subclass of Employees and doesn’t have its own key.

On the contrary, the key of Contract_Emps can be either EmployID or ContractID, which means, it can use either the key of its superclass or its own key as the primary key.

A real-life example is, each of you have a SSN, and at the same time as a UW student, have a stuID. So either SSN or stuID can be used as a key. However, you don’t need to use both of them as a key. Because if AB is a key, it means it is possible that for different tuples, although AB must be different, A can be the same. But for different students, SSN must be different, and at the same time stuID must also be different.

Note: I added back the 2 points for this to you. However, I hope you can catch this idea in your hw#4.

The key is: AD or BCD

It is neither in BCNF nor in 3NF

It can be decomposed into: BCA, BCD, DE

Or ABC, AD, DE

2. a) (name (((seller=”Joe”) Purchase
⋈ pname <> name ((category=”telephony” Product))

b)

SELECT
name

FROM

Product

WHERE
price > (

SELECT AVG (price)

FROM Product

WHERE category = ‘telephony’

)

c)

SELECT
Product.category, Purchase.date, SUM(price) AS totalSales

FROM

Purchase as Pur1, Product as Pro1

WHERE
Pur1.pname = Pro1.name

GROUP BY
Pur1.category, Pur1.date

HAVING
COUNT(*) > (

SELECT COUNT(*)

FROM Purchase as Pur2, Product as Pro2

WHERE date = “February 12th” AND Pro2.pname = Pur2.name

AND Pro2.category = Pro1.category

)

d)

For each movie name, if it appears in the movie table for (n) times, then it appears in the first query answer for (n-1) times or not appear at all if n=1; and it appears in the second query answer for n*(n-1)/2 times.

3. a) It is not updateable. There are 3 reasons:

(i) The select predicate price > 50. For example, the original two tables are both empty. As a result, the view itself is empty.

Now if we add a tuple like

(cellphone#1, Tim, Linda)

into the view. Then we need to add the tuple of

(cellphone#1, NULL, Tim, Linda)

and

(cellphone#1, NULL, NULL, NULL)

into Purchase table and Product table correspondingly.

However, after we join the two new tables together, the view is still empty and (cellphone#1, Tim, Linda) is EXCLUDED!

To fix this problem, we can drop the select predicate of price>50, or add attribute price into the view.

(ii) The join predicate. For example, the original table of Purchase has only one tuple like

(cellphone#1, 11/11/2001, Ben, Julie)

and the table of Product is empty. So the view itself is empty.

Now if we add a tuple like

(cellphone#1, Tim, Linda)

into the view. Then we need to add the tuple of

(cellphone#1, NULL, Tim, Linda)

and

(cellphone#1, NULL, NULL, NULL)

into Purchase table and Product table correspondingly.

Then when we recomputed the view, it contains 2 tuples now:

(cellphone#1, Ben, Julie)

(cellphone#1, Tim, Linda)

This problem doesn’t show up when name of Purchase is a foreign key of Product.

(iii) Another thing needs to be considered is whether all of the keys of both tables are included in the view. Suppose {pname, buyer, seller} is the key for Purchase and {name} is the key for Product, then it is ok. However, if the key of Purchase is actually {pname, date, buyer, seller}, then it is not updateable.

Note: If you answer includes any of the reasons above, you get the full point.

b) The query cannot be answered using View1.

We can use View1 to answer it only if manufacturer is the foreign key referencing to the attribute of cname in Company, supposing cname is the primary key of Company.

SELECT DISTINCT name, seller, buyer

FROM View1

It can be answered using View2.

SELECT DISTINCT name, seller, buyer

FROM View2

WHERE price > 50

