Lecture 27:

Friday, December 6, 2002

Outline

» Cost estimation: 16.4
» Recovery using undo logging 17.2

Estimating Sizes

* Need size in order to estimate cost
» Example:

— Cost of partitioned hash-join E1 X E2
is 3B(E1) + 3B(E2)

— B(E1) =T(E1) * record size/ block size

— B(E2) = T(E2) * record size/ block size

— So, we need to estimate T(E1), T(E2)

Estimating Sizes

Estimating the size of a projection

» Easy: T(IT (R)) = T(R)

« This is because a projection doesn’t
eliminate duplicates

Estimating Sizes

Estimating the size of a selection
* S=0,(R)
— T(S) san be anything from 0 to T(R) - V(R,A) + 1
— Mean value: T(S) = T(R)/V(R,A)
* S=0,.(R)
— T(S) can be anything from 0 to T(R)
— Heuristics: T(S) = T(R)/3

Estimating Sizes

Estimating the size of a natural join, R M, S

* When the set of A values are disjoint, then
TR X, S)=0

* When A is a key in S and a foreign key in
R, then T(R X, S) = T(R)

* When A has a unique value, the same in R
and S, then T(R X, S) = T(R) T(S)

Estimating Sizes

Assumptions:

» Containment of values: if V(R,A) <= V(S,A), then
the set of A values of R is included in the set of A
values of S

— Note: this indeed holds when A is a foreign key in R,
and a keyin S

* Preservation of values: for any other attribute B,
V(R X, S,B)=V(R,B) (or V(S, B))

Estimating Sizes

Assume V(R,A) <=V(S,A)

» Then each tuple t in R joins some tuple(s) in S
— How many ?
— On average T(S)/V(S,A)
— t will contribute T(S)/V(S,A) tuples in R M, S

» Hence T(R M, S)=T(R) T(S) / V(S,A)

In general: T(R M, S) = T(R) T(S) / max(V(R,A),V(S,A))

8

Estimating Sizes

Example:

+ T(R)=10000, T(S)=20000
* V(R,A) =100, V(S,A)=200
* How largeisR I, S ?

Answer: T(R M, S) =10000 20000/200 = 1M

Estimating Sizes

Joins on more than one attribute:
* TRM,pS)=

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

Histograms

« Statistics on data maintained by the
RDBMS

» Makes size estimation much more accurate
(hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, salary, phone)
* Maintain a histogram on salary:

Salary: 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k | > 100k

Tuples 200 800 5000 12000 6500 500

* T(Employee) = 25000, but now we know the
distribution

Histograms

Ranks(rankName, salary)
* Estimate the size of Employee Xg,,,, Ranks

Employee | 0..20k 20k.40k | 40k..60k | 60k..80k | 80k..100k | > 100k
200 800 5000 12000 6500 500

Ranks 0..20k 20k.40k | 40k..60k | 60k..80k | 80k..100k | > 100k

Histograms

V(Employee, Salary) =200 V(Ranks, Salary) = 250

Employee Kg,,, Ranks=
Employee, X,y Ranks, U ... UEmplyeeg Mg, Ranksg

+ A tuple t in Employee, joins with so many tuples in Ranks,:
T(Employee,)/T(Employee) * T(Employee)/250 =T, /250
* Then T(Employee Kg,,,, Ranks) =
=26 T, Ty /250
= (200x8 + 800x20 + 5000x40 +
12000x80 + 6500x100 + 500x2)/250

8 20 40 80 100 2
13
Recovery
Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

Redundancy:

Disk crashes e.g. RAID, archive

System Failures

 Each transaction has internal state
* When system crashes, internal state is lost
— Don’t know which parts executed and which
didn’t
* Remedy: use a log

— A file that records every single action of the
transaction

Fire, theft, Buy insurance,
bankruptcy... Change jobs...
Most System failures: DATABASE
frequent e.g. power RECOVERY
15
Transactions

A transaction = piece of code that must be executed
atomically
* In ad-hoc SQL
— one command = one transaction
* In embedded SQL
— Transaction starts = first SQL command issued
— Transaction ends =

* COMMIT
* ROLLBACK (=abort)

Transactions

» Assumption: the database is composed of
elements
— Usually 1 element = 1 block
— Can be smaller (=1 record) or larger (=1
relation)
» Assumption: each transaction reads/writes
some elements

Primitive Operations of

Transactions
* INPUT(X)
— read element X to memory buffer
* READ(X,t)

— copy element X to transaction local variable t
* WRITE(X,t)
— copy transaction local variable t to element X

OUTPUT(X)

— write element X to disk

Example
READ(A 1); t := t¥2;WRITE(A,t); READ(B,t); t := t*2; WRITE(B,t)

The Log

* An append-only file containing log records

Note: multiple transactions run
concurrently, log records are interleaved

After a system crash, use log to:
— Redo some transaction that didn’t commit
— Undo other transactions that didn’t commit

* Three kinds of logs: undo, redo, undo/redo

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
REAT(A,t) 8 8 8 8

t=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 1
Undo Logging

Log records
« <START T>
— transaction T has begun
* <COMMIT T>
— T has committed
* <ABORT T>
— T has aborted
e <T,X,v>
— T has updated element X, and its old value was v

22

Undo-Logging Rules

Ul: If T modifies X, then <T,X,v> must be
written to disk before X is output to disk
U2: If T commits, then <COMMIT T> must
be written to disk only after all changes by

T are output to disk

* Hence: OUTPUTSs are done early, before
the transaction commits

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A8>
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
<COMMIT T>

Recovery with Undo Log

After system’s crash, run recovery manager

* Idea 1. Decide for each transaction T
whether it is completed or not

— <START T>....<COMMIT T>.... =yes
— <START T>....<ABORT T>....... =yes
—<START T>........coooiiiiiin, =no

* Idea 2. Undo all modifications by
incomplete transactions

Recovery with Undo Log

Recovery manager:
» Read log from the end; cases:
— <COMMIIT T>: mark T as completed
— <ABORT T>: mark T as completed
— <T,X,v>:if T is not completed
then write X=v to disk
else ignore

— <START T>: ignore

26

Recovery with Undo Log

Questionl in class:

ZT6.X6.36> Which updates are
undone ?

igiﬁ ;5; Question 2 in class:

<T1LX1vl> How far back

<T5.X5,v5> do we need to

<T4,X4,v4> ¢

<COMMIT T5> read in the log ?

<T3,X3,v3>

.@ <T2,X2,v2>

Recovery with Undo Log

* Note: all undo commands are idempotent

— If we perform them a second time, no harm is
done

— E.g. if there is a system crash during recovery,
simply restart recovery from scratch

28

Recovery with Undo Log

When do we stop reading the log ?

* We cannot stop until we reach the
beginning of the log file

* This is impractical
* Better idea: use checkpointing

Checkpointing

Checkpoint the database periodically

 Stop accepting new transactions

» Wait until all current transactions complete
* Flush log to disk

* Write a <CKPT> log record, flush

¢ Resume transactions

30

Undo Recovery with
Checkpointing

<T9,X9,v9>)
. other transactions
During recovery, .

Can stop at first Gl completed)

<CKPT> <CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1.X1v1> transactions T2,T3,T4,T5
<T5,X5.v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Nonquiescent Checkpointing

* Problem with checkpointing: database
freezes during checkpoint

* Would like to checkpoint while database is
operational

« Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

Nonquiescent Checkpointing

« Write a <START CKPT(TL,...,Tk)>
where T1,..., Tk are all active transactions

» Continue normal operation

* When all of T1,...,Tk have completed, write
<END CKPT>

Undo Recovery with
Nonquiescent Checkpointing

earlier transactions plus
During recovery, | T4, T5,T5

Can stop at first
<CKPT> <START CKPT T4, T5, T6>

T4, TS, T6, plus
later transactions

<END CKPT>

later transactions

Q: why do we need
<END CKPT>? 34

