Lecture 26:

Wednesday, December 4, 2002

Administrative

* As per email to class:

— Question 1b on the homework has been
updated, see website

Outline

 Cost-based Query Optimziation
» Completing the physical query plan: 16.7
* Cost estimation: 16.4

Reducing the Search Space
* Left-linear trees v.s. Bushy trees
» Trees without cartesian product
Example: R(A,B) X S(B,C) X T(C,D)

Plan: (R(A,B) X T(C,D)) M S(B,C) has a cartesian
product — most query optimizers will not consider
it

Counting the Number of Join
Orders

¢ The mathematics we need to know:

Given X, X,, ..., X,, how many permutations can we
construct ? Answer: n!
» Example: permutations of X,X,X;X, are:
X, X,X3Xy
XX 4X3X)

(there are 41 = 4*3%2*] = 24 permutations)

Counting the Number of Join
Orders

* The mathematics we need to know:

Given the product X(X;X,...x,, in how many ways can we
place n pairs of parenthesis around them ? Answer:
1/(n+1)*C? = (2n)!/((n+1)*(n!)?)
* Example: for n=3
(XX)(%9X3))
((xo(x1%2))X3)
(Xo((x1%5)X3))
((xgX1)Xp)X3)
(Xo(x1(XX3)))

» There are 6!/(4*31*3!) = 5 ways

Counting the Number of Join

Orders (Excercise)
Ry(ApA) KR (ApA) M. . MR (AyA,)
» The number of left linear join trees is:

» The number of left linear join trees without
cartesian products is:

» The number of bushy join trees is:

» The number of bushy join trees without cartesian
product is:

Number of Subplans Inspected
by Dynamic Programming

Ro(Ao ADMRI(ALA) M. MR(ALA,,)
The number of left hnear subplans inspected is:

* The number of left linear subplans without cartesian
products inspected is:

* The number of bushy join subplans inspected is:

* The number of bushy join subplans without cartesian
product:

Completing the
Physical Query Plan

* Choose algorithm to implement each
operator
— Need to account for more than cost:
* How much memory do we have ?
« Are the input operand(s) sorted ?
* Decide for each intermediate result:
— To materialize
— To pipeline

Materialize Intermediate Results
Between Operators

HashTable < S
repeat read(R, x)

y € join(HashTable, x)
/ \\ write(V1, y)
HashTable < T

repeat read(Vl,y)

z € join(HashTable, y)
Vl / \\ write(V2, z)
HashTable ¢ U
repeat read(V2,z)

u € join(HashTable, z)
/ X \ write(Answer, u) ‘

Materialize Intermediate Results
Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

» What is the total cost of the plan ?
— Cost =

* How much main memory do we need ?
M=

Pipeline Between Operators

P
o/ HashTablel € S
& HashTable2 € T
. ng/ HashTable3 € U
N4 X U repeat read(R, x)

// y € join(HashTablel, x)
Ve z € join(HashTable2, y)
/ u € join(HashTable3, z)

write(Answer, u)

Pipeline Between Operators
Question in class
Given B(R), B(S), B(T), B(U)
» What is the total cost of the plan ?

— Cost=

* How much main memory do we need ?
~ M=

Pipeline in Bushy Trees

X
Va / \/\
/// Mx Pl X
e S
‘L z

/ x % /X
R S T I X Y ”

Example 16.36

* Logical plan is:
N\
U(y,2)
\ 10,000 blocks

R(w.x) S(x.y)
5,000 blocks 10,000 blocks

kblocks <

* Main memory M = 101 buffers

Example 16.36

M=101
M\
U(y,2)
\ 10,000 blocks
R(w.x) S(x.y)
5,000 blocks 10,000 blocks

kblocks <]

Naive evaluation:
* 2 partitioned hash-joins
« Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Example 16.36

M=101
N\
k blocks
ocks b Uy,2)
10,000 blocks
R(w.x) S(xy)
5,000 blocks 10,000 blocks
Smarter:

» Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk

» Step 2: hash S on x into 100 buckets; to disk

« Step 3: read each R; in memory (50 buffer) join with S; (1 buffer); hash result on
y into 50 buckets (50 buffers) -- here we pipeline

* Cost so far: 3B(R) +3B(S) 17

Example 16.36

M=101
>

N

U(y.2)
10,000 blocks

kblocks <]

R(w.x) S(xy)
5,000 blocks 10,000 blocks

Continuing:

How large are the 50 buckets on'y ? Answer: k/50.

If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
Step 4: read U from disk, hash on y and join with memory
Total cost: 3B(R) + 3B(S) + B(U) = 55,000 18

Example 16.36

M=101
>

N

U(y.2)
10,000 blocks

kblocks <]

R(w.x) S(xy)
5,000 blocks 10,000 blocks

Continuing:
» If50 <k <= 5000 then send the 50 buckets in Step 3 to disk

— Each bucket has size k/50 <= 100
« Step 4: partition U into 50 buckets
+ Step 5: read each partition and join in memory
+ Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

Example 16.36

M=101
M\
kblocks <] U(y.2)
10,000 blocks
R(w.x) S(xy)
.. 5,000 blocks 10,000 blocks
Continuing:

» Ifk > 5000 then materialize instead of pipeline
* 2 partitioned hash-joins
» Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

20

Example 16.36

Summary:

e Ifk <=50, cost = 55,000

o If 50 <k <=5000, cost= 75,000+ 2k
» If k> 5000, cost = 75,000 + 4k

Estimating Sizes

* Need size in order to estimate cost
» Example:
— Cost of partitioned hash-join E1 X E2
is 3B(E1) + 3B(E2)
—B(E1) =T(E1) * record size/ block size
— B(E2) = T(E2) * record size/ block size
— So, we need to estimate T(E1), T(E2)

22

Estimating Sizes

Estimating the size of a projection

 Easy: T(IT (R)) = T(R)

* This is because a projection doesn’t
eliminate duplicates

Estimating Sizes

Estimating the size of a selection
* S=0,(R)
— T(S) san be anything from 0 to T(R) - V(R,A) + 1
— Mean value: T(S) = T(R)/V(R,A)
* S=0,.(R)
— T(S) can be anything from 0 to T(R)
— Heuristics: T(S) = T(R)/3

24

Estimating Sizes

Estimating the size of a natural join, R M, S

* When the set of A values are disjoint, then
TR X, S)=0

* When A is a key in S and a foreign key in
R, then T(R M, S) = T(R)

* When A has a unique value, the same in R
and S, then T(R X, S) = T(R) T(S)

Estimating Sizes

Assumptions:

» Containment of values: if V(R,A) <= V(S,A), then
the set of A values of R is included in the set of A
values of S

— Note: this indeed holds when A is a foreign key in R,
and a keyin S

* Preservation of values: for any other attribute B,
V(R X, S,B)=V(R,B) (or V(S, B))

26

Estimating Sizes

Assume V(R,A) <= V(S,A)

» Then each tuple t in R joins some tuple(s) in S
— How many ?
— On average T(S)/V(S,A)
— t will contribute T(S)/V(S,A) tuples in R}, S

* Hence T(R M, S)=T(R) T(S) / V(S,A)

In general: T(R M, S) =T(R) T(S) / max(V(R,A),V(S,A))

27

Estimating Sizes
Example:
* T(R)=10000, T(S)=20000
* V(R,A) =100, V(S,A)=200
* How largeisR M, S ?
Answer: T(R), S)=10000 20000/200 = 1M

28

Estimating Sizes

Joins on more than one attribute:
* TRX,5S)=

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

Histograms

« Statistics on data maintained by the
RDBMS

» Makes size estimation much more accurate
(hence, cost estimations are more accurate)

30

Histograms

Employee(ssn, name, salary, phone)
* Maintain a histogram on salary:

Salary: 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k | > 100k

Tuples 200 800 5000 12000 6500 500

* T(Employee) = 25000, but now we know the
distribution

Histograms

Ranks(rankName, salary)
* Estimate the size of Employee X, Ranks

Employee | 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k | > 100k
200 800 5000 12000 6500 500

Ranks 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k | > 100k

8 20 40 80 100 2

32

Histograms

* Assume:
— V(Employee, Salary) =200
— V(Ranks, Salary) =250
* Main property:
Employee Xg,,., Ranks=Employee, Mg,,,, Ranks,” U ... © Emplyeeg Xy, Ranks,’

* Atuple t in Employee, joins with how many tuples in Ranks,” ?
— Answer: with T(Employee,)/T(Employee) * T(Employee)/250 =T, /250
* Then T(Employee Xg,,, Ranks) =
=%, T, T /250
= (200x8 + 800x20 + 5000x40 +
12000x80 + 6500x100 + 500x2)/250

