Lecture 24:

Wednesday, November 27, 2002

Outline

* Query optimization: algebraic laws 16.2
» Cost-based optimization 16.5, 16.6

The three components of an
optimizer

We need three things in an optimizer:

 Algebraic laws
* An optimization algorithm
* A cost estimator

Algebraic Laws

¢ Commutative and Associative Laws
-RuUS=SUR, RUSUT)=RUS)UT
~RNS=SNR, RN(SNT)=RNS)NT
~RNS=SKR, RM(SKT)=(RKXS)XT
¢ Distributive Laws
“RXGSUT) = RKS)URKT)

Algebraic Laws

» Laws involving selection:
— 6canncR)=0 (0 =(R)) =0 (R) N o (R)
~ G corcR) =0 (R)Uc (R)
- ocRXS)=cR)XS
* When C involves only attributes of R
~ 6c(R-8)=6R)-S
- 6 cRUS)=0R)UG(S)
-ocRNS)=c.R)NS

Algebraic Laws
» Example: R(A, B, C, D), S(E, F, G)
- op3RNXpgS)= ?
— G a=s anD G=o (R Mpg)= ?

Algebraic Laws

» Laws involving projections
— TR X S) = Ty(ITp(R) X [(S))

* Where N, P, Q are appropriate subsets of attributes
of M

- IMy(Ik(R)) = HMJ\J(R)
» Example R(A,B,C,D), S(E, F, G)
= T, (R XS) =TI, (IT,(R) X TI,(S))

Algebraic Laws

Laws involving grouping and aggregation:
* 6('YA, agg(B)(R)) = YA, agg(B)(R)
* Ya agg(B).(S(R)) = Y4, agee)(R) if agg is “duplicate
insensitive”
— Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max
* YA, age)(R(A,B) Xp_ S(C.D)) =
YA, agg(D)(R(A$B) DqB:C (YB agg(D)S(C$D)))
— Why is this true ?
— Why would we do it ?

Heuristic Based Optimizations

* Query rewriting based on algebraic laws
» Result in better queries most of the time
* Heuristics number 1:

— Push selections down
 Heuristics number 2:

— Sometimes push selections up, then down

Predicate Pushdown

pname

pname

c Tice)ﬂlo AND city="“Seattle” ‘

o<
maker=name
=<
/maker:n{ 9 price>100 ocilr“Seattle"
Product Company Product Company

The earlier we process selections, less tuples we need to manipulate
higher up in the tree (but may cause us to loose an important ordering

of the tuples, if we use indexes). 0

Predicate Pushdown

Select y.name, Max(x.price)
From product x, company y
Where x.maker = y.name
GroupBy y.name

Having Max(x.price) > 100

Select y.name, Max(x.price)

From product x, company y

Where x.maker=y.name and
x.price > 100

GroupBy y.name

Having Max(x.price) > 100

* For each company, find the maximal price of its products.

*Advantage: the size of the join will be smaller.

« Requires transformation rules specific to the grouping/aggregation
operators.

* Won’t work if we replace Max by Min.

11

Pushing predicates up

Bargain view V1: categories with some price<20, and the cheapest price

Select V2.name, V2.price

From VI1,V2

Where Vl.category = V2.category and
V1.p = V2.price

Create View V1 AS \

Create View V2 AS

Select y.name, x.category, x.price
From product x From product X, company y
Where x.price <20 Where x.maker=y.name
GroupBy x.category 12

Select x.category,
Min(x.price) AS p

Query Rewrite: Query Rewrite:
Pushing predicates up Pushing predicates up
Bargain view V1: categories with some price<20, and the cheapest price Bargain view V1: categories with some price<20, and the cheapest price
Select V2.name, V2.price Select V2.name, V2.price
From VI1,V2 From VI1,V2
Where Vl.category = V2.category and Where Vl.category = V2.category and
V1.p=V2.price AND V1.p <20 V1.p=V2.price AND V1.p <20
Create View V1 AS \ Create View V1 AS \
Select x.category, Create View V2 AS Select x.category, Create View V2 AS
Min(x.price) AS p Select y.name, X.category, X.price Min(x.price) AS p Select y.name, x.category, x.price
From product x From product X, company y From product x From product X, company y
Where x.price <20 Where x.maker=y.name Where x.price <20 Where x.maker=y.name
GroupBy x.category 5 GroupBy x.category AND V1.p<20
Cost-based Optimizations Cost-based Optimizations
* Main idea: apply algebraic laws, until Approaches:
estimated cost is minimal
* Practically: start from partial plans, * Top-down: the partial plan is a top fragment
introduce operators one by one of the logical plan
— Will see in a few slides
: Phroll)lem: }tlhere are too many WF“IIS t(l) apply * Bottom up: the partial plan is a bottom
the laws, hence too many (partial) plans fragment of the logical plan
15 16
Search Strategies Dynamic Programming
* Branch-and-bound: Unit of Optimization
_ i:r;;esrtn?:er the cheapest complete plan P seen so far and « Select- pro J ect-] oin
— Stop generating partial plans whose cost is > C — Push selections down, pull projections up

— If a cheaper complete plan is found, replace P, C
 Hill climbing:

— Remember only the cheapest partial plan seen so far
* Dynamic programming:

— Remember the all cheapest partial plans

Join Trees

¢« RIIR2M ... X Rn

« Join tree:
/ = \
> >
R3 R1 R2 R4

* A join tree represents a plan. An optimizer needs
to inspect many (all ?) join trees

Types of Join Trees

* Left deep:

20

Types of Join Trees
* Bushy:
/N\
> >
<N N
/N
RI RS

Types of Join Trees

« Right deep:
D>

s
R3 / \N
~
D
RS VRN

R2 R4

R1

22

Problem

* Given: aquery R1p<d R2p< ... < Rn

» Assume we have a function cost() that gives
us the cost of every join tree

* Find the best join tree for the query

Dynamic Programming

* Idea: for each subset of {R1, ..., Rn}, compute the
best plan for that subset

* In increasing order of set cardinality:
— Step 1: for {R1}, {R2}, ..., {Rn}
— Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

— Step n: for {R1, ..., Rn}
» A subset of {R1, ..., Rn} is also called a subquery

24

Dynamic Programming

* For each subquery Q & {R1, ..., Rn}
compute the following:

— Size(Q)
— A best plan for Q: Plan(Q)
— The cost of that plan: Cost(Q)

Dynamic Programming

» Step i: Foreach Q & {R1, ..., Rn} of

cardinality i do:

— Compute Size(Q) (later...)

— For every pair of subqueries Q’, Q”’
st.Q=Q'UQ”
compute cost(Plan(Q”) >< Plan(Q”’))

— Cost(Q) = the smallest such cost

— Plan(Q) = the corresponding plan

Dynamic Programming

» Step 1: For each {Ri} do:
- Size({Ri}) = B(Ri)
~ Plan({Ri}) = Ri
— Cost({Ri}) = (cost of scanning Ri)

26

Dynamic Programming

* Return Plan({R1, ..., Rn})

28

Dynamic Programming

To illustrate, we will make the following
simplifications:
» Cost(P1 > P2) = Cost(P1) + Cost(P2) +
size(intermediate result(s))
* Intermediate results:

— If P1 = a join, then the size of the intermediate result is
size(P1), otherwise the size is 0

— Similarly for P2
* Costofascan=0

Dynamic Programming

» Example:
* Cost(R5<IR7) =0
* Cost((R2><R1) ><1 R7)

= Cost(R2 >XIR1) + Cost(R7) + size(R2 PJIR1)
=size(R2 PIR1)

(no intermediate results)

30

Dynamic Programming

e Relations: R, S, T, U
» Number of tuples: 2000, 5000, 3000, 1000
 Size estimation: T(A><B) = 0.01*T(A)*T(B)

Subquery Size Cost Plan

RS

RT

RU

STU

RSTU 3

Subquery Size Cost Plan
RS 100k 0 RS
RT 60k 0 RT
RU 20k 0 RU
ST 150k 0 ST
su S0k 0 su
TU 30k 0 TU
RST 3M 60k RT)S

RSU M 20k (RU)S
RTU 0.6M 20k RU)T
STU 1.5M 30k (TU)S
RSTU 30M 60k+50k=110k (RT)(SU) 33

Dynamic Programming

* Summary: computes optimal plans for subqueries:
— Step 1: {R1}, {R2}, ..., {Rn}
— Step 2: {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}
— Step n: {R1, ..., Rn}
» We used naive size/cost estimations
* In practice:
— more realistic size/cost estimations (next time)
— heuristics for Reducing the Search Space
* Restrict to left linear trees
* Restrict to trees “without cartesian product”
— need more than just one plan for each subquery:
* “interesting orders™

