Lecture 22:

Friday, November 22, 2002

Outline

* Query execution: 15.1 —15.5

Two-Pass Algorithms Based on
Sorting

* Recall: multi-way merge sort needs only
two passes !

 Assumption: B(R) <= M?
» Cost for sorting: 3B(R)

Two-Pass Algorithms Based on
Sorting

Duplicate elimination 3(R)
* Trivial idea: sort first, then eliminate duplicates
» Step 1: sort chunks of size M, write

— cost 2B(R)

» Step 2: merge M-1 runs, but include each tuple
only once
— cost B(R)

* Total cost: 3B(R), Assumption: B(R) <= M?

Two-Pass Algorithms Based on
Sorting

GI'OllpiIlgI Ya, sum(b) (R)
» Same as before: sort, then compute the
sum(b) for each group of a’s

 Total cost: 3B(R)
* Assumption: B(R) <= M?

Two-Pass Algorithms Based on
Sorting

x = first(R)
RuUS y = first(S)

While () do
{ casex<y:
output(x)
Complete X = next(R)
the program case x=y:
in class:

case x>y,

}

Two-Pass Algorithms Based on

Sorting
x = first(R)
RnS y = first(S)
While () do
{ casex<y:
Complete
the program case x=y:
in class:

case x>y,

}

Two-Pass Algorithms Based on

Sorting
x = first(R)
R-S y = first(S)

While () do
{ casex<y:

Complete

the program case x=y:

in class:

case x>y,

Two-Pass Algorithms Based on
Sorting

Binary operations: RUS,RnS,R-S
* Idea: sort R, sort S, then do the right thing
* A closer look:

— Step 1: split R into runs of size M, then split S into runs
of size M. Cost: 2B(R) + 2B(S)

— Step 2: merge M/2 runs from R; merge M/2 runs from
S; ouput a tuple on a case by cases basis

* Total cost: 3B(R)+3B(S)
 Assumption: B(R)+B(S)<= M2

Two-Pass Algorithms Based on

R(A,C), S(B,D) Sorting
x = first(R)
RMra-spS y = first(S)

While ()do
{ casex.A<y.B:

Complete

the program case X.A=y.B:

in class:

case X.A >y.B;

Two-Pass Algorithms Based on
Sorting

JoinR XS

* Start by sorting both R and S on the join attribute:
— Cost: 4B(R)+4B(S) (because need to write to disk)

» Read both relations in sorted order, match tuples
— Cost: B(R)+B(S)

« Difficulty: many tuples in R may match many in S
— If at least one set of tuples fits in M, we are OK
— Otherwise need nested loop, higher cost

» Total cost: 5SB(R)+5B(S)

* Assumption: B(R) <= M2, B(S) <= M?

Two-Pass Algorithms Based on
Sorting
JoinR I S

« If the number of tuples in R matching those
in S is small (or vice versa) we can compute
the join during the merge phase

 Total cost: 3B(R)+3B(S)
 Assumption: B(R)+ B(S) <= M?

Two Pass Algorithms Based on
Hashing

* Idea: partition a relation R into buckets, on disk
+ Each bucket has size approx. B(R)M

OUTPUT | Partitions
S— 1
1 [
2 INPUT i
L>] runction vy
h M-1
B(R) |l
Disk M main memory buffers Disk

» Does each bucket fit in main memory ?
~ Yesif BRYM <=M, i.e. B(R)<=M?

Hash Based Algorithms for &

Recall: 3(R) = duplicate elimination
« Step 1. Partition R into buckets

Step 2. Apply o to each bucket (may read in
main memory)

Cost: 3B(R)
» Assumption:B(R) <= M?

Hash Based Algorithms for y

* Recall: y(R) = grouping and aggregation
 Step 1. Partition R into buckets

» Step 2. Apply y to each bucket (may read in
main memory)

e Cost: 3B(R)
+ Assumption:B(R) <= M?

Partitioned Hash Join

RNXS
e Step 1:
— Hash S into M buckets
— send all buckets to disk
» Step 2
— Hash R into M buckets
— Send all buckets to disk
e Step 3

— Join every pair of buckets

Original

Hash_Jo in Relation OuTPUT Partitions

* Partition both relations
using hash fn h: R
tuples in partition i will
only match S tuples in
partition i.

INPUT
h:
L > [] héifon
h

Disk B main memory buffers
Partitions .
of R&S — Join Result
. L Hash table for partition
% Read in a partition hash Si (< M-1 pages)
of R, hash it using o |y OO - O O
h2 (<> h!). Scan oo o
matching partition e " m e
of S, search for 0o toputbutter Output B

matches.

Disk B main memory buffers Disk

Partitioned Hash Join

» Cost: 3B(R) + 3B(S)
+ Assumption: min(B(R), B(S)) <= M?

Hybrid Hash Join Algorithm

Partition S into k buckets

But keep first bucket S, in memory, k-1
buckets to disk

Partition R into k buckets

— First bucket R, is joined immediately with S,
— Other k-1 buckets go to disk

Finally, join k-1 pairs of buckets:

— (R2,5)), (R,S5), ., (Ry,Sy)

Hybrid Join Algorithm

* How big should we choose k ?

» Average bucket size for S is B(S)/k

* Need to fit B(S)/k + (k-1) blocks in memory
“BES)k + (k-1) <=M
— k slightly smaller than B(S)/M

20

Hybrid Join Algorithm

How many 1/Os ?

Recall: cost of partitioned hash join:

~ 3B(R) +3B(S)

Now we save 2 disk operations for one bucket

Recall there are k buckets

Hence we save 2/k(B(R) + B(S))

Cost: (3-2/k)(B(R) + B(S)) =
(3-2M/B(S))(B(R) + B(S))

Hybrid Join Algorithm

* Question in class: what is the real advantage
of the hybrid algorithm ?

22

Indexed Based Algorithms

Recall that in a clustered index all tuples
with the same value of the key are clustered
on as few blocks as possible

‘ aaa‘ ‘aaaaa‘ ‘aa ‘

Note: book uses another term: “clustering
index”. Difference is minor...

Index Based Selection
* Selection on equality: c,_(R)

¢ Clustered index on a: cost B(R)/V(R,a)
* Unclustered index on a: cost T(R)/V(R,a)

24

Index Based Selection

Example: B(R) =2000, T(R) = 100,000, V(R, a)
= 20, compute the cost of 5,_(R)

Cost of table scan:

— If R is clustered: B(R) = 2000 I/Os

— If R is unclustered: T(R) = 100,000 I/Os

» Cost of index based selection:

— Ifindex is clustered: B(R)/V(R,a) = 100

 Ifindex is unclustered: T(R)/V(R,a) = 5000

Notice: when V(R,a) is small, then unclustered
index is useless

Index Based Join

RS
Assume S has an index on the join attribute

Iterate over R, for each tuple fetch
corresponding tuple(s) from S

Assume R is clustered. Cost:

— If index is clustered: B(R) + T(R)B(S)/V(S,a)
— If index is unclustered: B(R) + T(R)T(S)/V(S,a)

26

Index Based Join

» Assume both R and S have a sorted index
(B+ tree) on the join attribute

* Then perform a merge join (called zig-zag
join)

* Cost: B(R) + B(S)

Questions in Class

* B(Product), B(Company) are large
* Which join method would you use ?

* Consider: SELECT Product.name,

Company.city
— 10 bozos FROM Product, Company
v.8. 100...0 | WHERE Product.maker = Company.name
— 10 cool and Product.category = ‘bozo’ and
companies Company.rating = ‘cool’

v.s. 100...00

28

