Lecture 22:

Friday, November 22, 2002

Outline

- Query execution: 15.1 – 15.5

Two-Pass Algorithms Based on Sorting

- Recall: multi-way merge sort needs only two passes!
- Assumption: \(B(R) \leq M^2 \)
- Cost for sorting: \(3B(R) \)

Two-Pass Algorithms Based on Sorting

Duplicate elimination \(\delta(R) \)

- Trivial idea: sort first, then eliminate duplicates
- Step 1: sort chunks of size \(M \), write
 - cost \(2B(R) \)
- Step 2: merge \(M-1 \) runs, but include each tuple only once
 - cost \(B(R) \)
- Total cost: \(3B(R), \) Assumption: \(B(R) \leq M^2 \)

Two-Pass Algorithms Based on Sorting

Grouping: \(\gamma_{a,\text{sum}(b)}(R) \)

- Same as before: sort, then compute the sum\((b) \) for each group of a’s
- Total cost: \(3B(R) \)
- Assumption: \(B(R) \leq M^2 \)

Two-Pass Algorithms Based on Sorting

R \(\cup \) S

\[
x \leftarrow \text{first}(R) \\
y \leftarrow \text{first}(S)
\]

While \((x, y) \) do

\[\begin{cases}
\text{case } x < y: \\
\text{output}(x) \\
x \leftarrow \text{next}(x)
\end{cases}\]

\[\begin{cases}
\text{case } x > y: \\
x \leftarrow \text{next}(x) \\
\end{cases}\]

Complete the program in class:
Two-Pass Algorithms Based on Sorting

R \cap S

Complete the program in class:

\begin{verbatim}
x = first(R) y = first(S)
While (__________) do
{ case x < y:
 case x = y:
 case x = y;
}
\end{verbatim}

Two-Pass Algorithms Based on Sorting

R - S

Complete the program in class:

\begin{verbatim}
x = first(R) y = first(S)
While (__________) do
{ case x < y:
 case x = y:
 case x > y;
}
\end{verbatim}

Two-Pass Algorithms Based on Sorting

Binary operations: R \cup S, R \cap S, R - S
- Idea: sort R, sort S, then do the right thing
- A closer look:
 - Step 1: split R into runs of size M, then split S into runs of size M. Cost: 2B(R) + 2B(S)
 - Step 2: merge M/2 runs from R; merge M/2 runs from S; output a tuple on a case by cases basis
- Total cost: 3B(R)+3B(S)
- Assumption: B(R)+B(S)\leq M^2

Two-Pass Algorithms Based on Sorting

R(A,C), S(B,D)

Join R \bowtie S
- Start by sorting both R and S on the join attribute:
 - Cost: 4B(R)+4B(S) (because need to write to disk)
- Read both relations in sorted order, match tuples
 - Cost: B(R)+B(S)
- Difficulty: many tuples in R may match many in S
 - If at least one set of tuples fits in M, we are OK
 - Otherwise need nested loop, higher cost
- Total cost: 5B(R)+5B(S)
- Assumption: B(R) \leq M^2, B(S) \leq M^2

Two-Pass Algorithms Based on Sorting

Join R \bowtie S
- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: B(R) + B(S) \leq M^2
Two Pass Algorithms Based on Hashing

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M
- Does each bucket fit in main memory?
 - Yes if B(R)/M ≤ M, i.e. B(R) ≤ M^2

Hash Based Algorithms for δ

- Recall: δ(R) = duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: B(R) ≤ M^2

Hash Based Algorithms for γ

- Recall: γ(R) = grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: B(R) ≤ M^2

Partitioned Hash Join

R ÷ S
- Step 1:
 - Hash S into M buckets
 - Send all buckets to disk
- Step 2
 - Hash R into M buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

Hash-Join

- Partition both relations using hash fn: h. R tuples in partition i will only match S tuples in partition i.
- Read in a partition of R, hash it using h2 (⇐ h1). Scan matching partition of S, search for matches.

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: min(B(R), B(S)) ≤ M^2
Hybrid Hash Join Algorithm

- Partition S into k buckets
- But keep first bucket S₁ in memory, k-1 buckets to disk
- Partition R into k buckets
 - First bucket R₁ is joined immediately with S₁
 - Other k-1 buckets go to disk
- Finally, join k-1 pairs of buckets:
 - (R₂S₂), (R₃S₃), ..., (RₖSₖ)

Hybrid Join Algorithm

- How big should we choose k?
- Average bucket size for S is B(S)/k
- Need to fit B(S)/k + (k-1) blocks in memory
 - B(S)/k + (k-1) <= M
 - k slightly smaller than B(S)/M

Hybrid Join Algorithm

- How many I/Os?
- Recall: cost of partitioned hash join:
 - 3B(R) + 3B(S)
- Now we save 2 disk operations for one bucket
- Recall there are k buckets
- Hence we save 2/k(B(R) + B(S))
- Cost: (3-2k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

Indexed Based Algorithms

- Recall that in a clustered index all tuples with the same value of the key are clustered on as few blocks as possible
- Note: book uses another term: “clustering index”. Difference is minor…

Index Based Selection

- Selection on equality: σ_{=v}(R)
- Clustered index on a: cost B(R)/V(R,a)
- Unclustered index on a: cost T(R)/V(R,a)
Index Based Selection

- Example: B(R) = 2000, T(R) = 100,000, V(R, a) = 20, compute the cost of \(\sigma_{a=r}(R) \)
- Cost of table scan:
 - If R is clustered: B(R) = 2000 I/Os
 - If R is unclustered: T(R) = 100,000 I/Os
- Cost of index based selection:
 - If index is clustered: B(R)/V(R,a) = 100
 - If index is unclustered: T(R)/V(R,a) = 5000
- Notice: when V(R,a) is small, then unclustered index is useless

Index Based Join

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Assume R is clustered. Cost:
 - If index is clustered: B(R) + T(R)B(S)/V(S,a)
 - If index is unclustered: B(R) + T(R)T(S)/V(S,a)

Index Based Join

- Assume both R and S have a sorted index (B+ tree) on the join attribute
- Then perform a merge join (called zig-zag join)
- Cost: B(R) + B(S)

Questions in Class

- B(Product), B(Company) are large
- Which join method would you use?
- Consider:
 - 10 bozos v.s. 100...0
 - 10 cool companies v.s. 100...0

SELECT Product.name,
 Company.city
FROM Product, Company
WHERE Product.maker = Company.name
 and Product.category = 'bozo'
 and Company.rating = 'cool'